目录

编	辑 及出版说明
1	常规信息2
2	仪器简介4
	2.1 主要功能
	2.2 主要特点5
	2.3 仪器结构组成6
	2.3.1 仪器组成6
	2.3.2 仪器主机7
	2.3.3 径向换能器7
	2.3.4 自动深度计数装置8
	2.3.5 MC-6320 配置信息9
	2.3.6 MC-6310 配置信息10
	2.4 主要性能指标11
	2.5 环境要求
	2.5.1 工作环境要求13
	2.5.2 贮存环境要求13
	2.6 仪器维护保养14
	2.6.1 防 震14
	2.6.2 防高温14

	2.6.3 防腐蚀	14
	2.6.4 电 源	14
	2.6.5 充 电	15
	2.6.6 内置锂电池	16
	2.6.7 径向换能器	16
	2.6.8 仪器主机保养	16
	2.7 责 任	17
3	启动画面	18
	3.1 触摸屏校正	18
	3.1.1 正常条件校正	19
	3.1.2 非正常条件校正	20
	3.2 软件升级	20
	3.3 软件版本	21
	3.4 设置系统时间	22
4	通用功能	24
	4.1 数字键盘	24
	4.2 字母键盘及中文输入法	24
	4.3 采样长度	25
	4.4 采样周期	26
	4.5 发射电压	26
	4.6 零声时设置	27
	4.7 显示设置	27
	4.8 恢复出厂设置	28
	4.9 文件管理	29

	4.9.1 打开文件	30
	4.9.2 传输文件	30
	4.9.3 删除	31
	4.9.4 仪器存储空间显示	31
	4.10 数据采样	31
	4.10.1 波形移动	31
	4.10.2 增益调整	32
	4.10.3 基线调整	32
	4.10.4 判读线调整	32
	4.10.5 波形搜索	32
	4.11 零声时校正	33
	4.11.1 平面换能器校正	33
	4.11.2 径向换能器校正	34
5	声波透射法测桩	36
	5.1 测试主界面	36
	5.1.1 概述	36
	5.1.2 波形图形显示区域	37
	5.1.3 功能按键区域	39
	5.2 参数设置	41
	5.2.1 工程信息设置	42
	5.2.2 通道参数设置	44
	5.3 加密测试	45
	5.4 视图切换	46

	5.4.2	波列视图	48
	5.5 数据	保存	48
	5.5.1	自动保存	49
	5.5.2	手动保存	49
	5.6 深度	技术精度校正	49
	5.6.1	快速校正	49
	5.6.2	常规校正	50
	5.7 测试	指南	50
	5.7.1	仪器连接	51
	5.7.2	新建测试文件	53
	5.7.3	数据处理	55
6	超声回	弹综合法测强	56
6	超声回 6.1 测试	弹综合法测强 主界面	56
6	超声回 6.1 测试 6.1.1	弹综合法测强 主界面 测试示意图	56 .56 .57
6	超声回 6.1 测试 6.1.1 6.1.2	弹综合法测强 主界面 测试示意图 测区列表	56 .56 .57
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3	弹综合法测强 主界面 测试示意图 测区列表 统计数据	56 57 57 57
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3 6.1.4	弹综合法测强 主界面 测试示意图 测区列表 统计数据 测点列表	56 .57 .57 .57 .57
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	弹综合法测强 主界面	56 57 57 57 58 58
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 参数	弹综合法测强 主界面	56 57 57 57 58 58 60
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 参数 6.3 计算	弹综合法测强	56 57 57 57 58 58 60 61
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 参数 6.3 计算 6.3.1	弹综合法测强	56 57 57 57 58 60 61 62
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 参数 6.3 计算 6.3.1 6.3.2	弹综合法测强	56 57 57 57 58 60 61 62 62
6	超声回 6.1 测试 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 参数 6.3 计算 6.3.1 6.3.2 6.3.3	弹综合法测强	56 57 57 58 60 61 62 62 62

6.3.5 设计强度	63
6.3.6 声速修正	64
6.3.7 强度修正	64
6.4 数据保存	64
6.4.1 自动保存	64
6.4.2 手动保存	64
6.5 测试指南	65
6.5.1 仪器连接	65
6.5.2 新建测试文件	65
6.5.3 数据处理	66
7 不密实区和空洞检测	67
7.1 测试主界面	67
7.1.1 测试示意图	68
7.1.2 测点列表	69
7.1.3 统计数据	69
7.1.4 功能按键区域	70
7.2 参数设置	72
7.3 计算参数	72
7.4 数据保存	73
7.4.1 自动保存	73
7.4.2 手动保存	73
7.5 测试指南	73
7.5.1 仪器连接	73

	7.5.3	数据处理	. 75
8	超声法	裂缝深度检测	76
	8.1 测试	【主界面	. 76
	8.1.1	测试信息	. 77
	8.1.2	测点列表	. 77
	8.1.3	裂缝列表	. 77
	8.1.4	回归测试曲线	. 78
	8.1.5	功能按键区域	. 79
	8.2 参数	女设置	. 81
	8.3 数据	张存	. 82
	8.3.1	自动保存	. 82
	8.3.2	手动保存	. 82
	8.4 测试	代指南	. 83
	8.4.1	仪器连接	. 83
	8.4.2	新建测试文件	. 83
	8.4.3	数据处理	. 84
9	附录…		85
	9.1 仪器	音部分数据计算公式	. 85
	9.1.1	《建筑基桩检测技术规范(JGJ 106-2003)》	. 85
	9.1.2	《混凝土缺陷检测技术规程(CECS 21:2000)》	.91
	9.1.3	《公路工程基桩动测技术规范(JTG/T F81-01-2004)》	.94
	9.2 触搏	莫屏 U 盘校正软件获取	. 98
	9.2.1	网站直接下载	. 98
	9.2.2	数据处理软件接口更新	. 98

9.3 U 盘升	├级文件获取	9 9
9.3.1 🕅	网站直接下载	99
9.3.2 娄	数据处理软件接口更新	99

编辑及出版说明

本说明书在南京铭创测控科技有限公司监督下编辑出版,包含最新 的产品说明和规格。本说明书及内容及产品规格如有更改,恕不另 行通知。

南京铭创测控科技有限公司保留对包含在说明书中的产品规格和内 容做出更改的权利,恕不另行通知,同时由于使用本说明书所包含 的内容所造成的任何损坏(包括后果),包括但不仅限于本出版物 的排版及其他错误,南京铭创测控科技有限公司将不承担任何责 任。

1 常规信息

使用本说明书

感谢您选用南京铭创测控科技有限公司的产品! 阅读本说明书 将有助于您充分使用本仪器。

本说明书中使用的符号和惯例

本说明书中使用的符号和惯例如下。

Bold 粗黑体带方框字表示在仪器操作面板上或仪器屏幕上的 特定按键。

Italics 斜体字强调了应注意的要点或提示您参考相关主题。

<u>下划线</u> 下划线字表示在设备液晶显示屏上显示的信息。

\Lambda 警告图标警告您应如何避免可能造成的人身伤害。

注意事项图标说明了您必须遵守或避免的一些步骤以防止 损坏仪器或其他物品。

💟 错误设置图标提醒您与本仪器不兼容的设备和操作。

🚩 注释图标为您提供有用的提示。

❶ 仪器面板上或屏幕上的特定按键称为"键"或"按键"。

🕗 超声回弹综合法检测混凝土抗压强度,简称"测强"。

🚯 超声法检测混凝土内部不密实区和空洞,简称"测缺"。

🕙 声波透射法检测测桩身完整,简称"测桩"。

5 单面平测法裂缝深度检测,简称"测缝"。

⑥ 除了本说明书中介绍的内容外,用户在使用仪器的时候, 如果操作不当或出现异常情况,仪器会自动显示一些提示信息以帮助用户解决问题。

本手册所提到的产品规格和资料仅供参考,产品以实物为准, 如内容更新,恕不另行通知。实际检测时请参照适用规范。为了及 时了解最新的信息请随时关注我们的网站 http://www.mcck.cn

2 仪器简介

MC6310/6320 非金属超声检测仪(以下简称仪器)是南京铭 创测控科技有限公司推出的高端产品,技术水平全国领先。该产品 可以测试混凝土、岩石、耐火砖等非金属材料的波速、内部密实 度。目前广泛用于混凝土强度检测、缺陷检测(包括结构内部空洞 和不密实区检测、裂缝深度检测、混凝土结合面质量检测、钢管混 凝土缺陷检测、表面损伤层检测等)、混凝土基桩完整性检测、材 料的物理及力学性能检测等。

2.1 主要功能

超声回弹综合法检测混凝土抗压强度(简称测强):

■ 《超声回弹综合法检测混凝土强度技术规程》(CECS)

02:2005)

或地方规程对混凝土抗压强度进行检测,并对检测数据进行计 算处理。

超声法检测混凝土缺陷(简称测缺):

《超声法检测混凝土缺陷技术规程》(CECS21:2000) 对混凝土内部不密实区及空洞、混凝土结合面质量及钢管混凝 土内部缺陷进行检测,并对检测数据进行计算处理与判别。
声波透射法检测基桩完整性(简称测桩):

■ 《建筑基桩检测技术规范》(JGJ106-2003)

■ 《公路工程基桩动测技术规程》JTG/TF81-01-2004

■ 《铁路工程基桩检测技术规程》TB 10218-2008

■ 《广东省标准建筑地基基础检测规范》(DBJ15-60-2008)

对桩基完整性进行检测,并对检测数据进行计算处理与判别。 超声法检测混凝土裂缝深度(简称测缝):

■ 《超声法检测混凝土缺陷技术规程》(CECS21: 2000)

对混凝土裂缝深度进行检测,并对检测数据进行计算处理与判 别。

2.2 主要特点

- 全新 ARM Cortex A8 高性能处理器,作为微软嵌入式合作 伙伴计划(Microsoft Embedded Parogarm)成员,对微软 嵌入式系统 Windows CE 进行深度定制,仪器系统运行更 加稳定,开机 15 秒进入系统。同时降低了功耗,电池续 航时间高达 8 小时;
- 国内首创带前置放大的收发兼用超声径向换能器,在正常 混凝土中测试距离可达8米。换能器的接收和发射不再区 分,更加方便用户备用。并且与多通道超声基桩检测仪的 径向换能器通用,国内第一家实现了多通道超声和非金属 超声径向换能器的通用,减少了浪费,方便了用户。

5 / 106

- 8.4 寸工业级高亮宽温显示器, 阳光下轻松可视;
- 业内首创迭代判读算法,测桩基时首波自动判读,判对率 高达 98%,后期数据处理轻松应对;
- 机内软件人性化操作,注重人机对话感觉,一学就会。
- 内置 16GB 超大存储空间,采样MSB 高速接口,支持 U 盘传输数据;
- 专业数据处理软件,可以快速的对检测数据进行分析,生
 产检测报告;
- 外壳采用高强度合金材料制造、独特防水溅设计,坚固耐用;
- 仪器配备高强度防水仪器箱,轻松应对野外各种环境的变化。

2.3 仪器结构组成

2.3.1 仪器组成

仪器主要组成:

MC-6310:

主机、平面换能器、其他配件(电源适配器、U盘、触摸笔 等)

MC-6320:

6 / 106

主机、径向换能器、自动深度计数装置、三脚架、平面换能器、其他配件(电源适配器、U盘、触摸笔等)

2.3.2 仪器主机

MC-6320 非金属超声检测仪(MC-6310 基本结构相同)外观如 图 2.3-1 和图 2.3-2 所示。

图 2.3-1 仪器正面图

图 2.3-2 仪器侧面图

2.3.3 径向换能器

径向换能器是用来发射和接收超声波的传感器,每支换能器均 可以发射和接收,换能器的信号线长度可以自由定制。

2.3.4 自动深度计数装置

自动深度计数装置主要用于自动记录换能器在基桩声测管中的 深度,计数装置在检测时和仪器主机计数装置接口相连。根据在主 机中设置的 **测点间距** 自动向主机发送信号,通知主机存储该深度 时的波形数据和声参量等信息。

自动深度计数装置主要包括深度计数轮、管口导向轮、三脚架 等组成。如图 2.3-3 所示。

a) 深度计数轮

b) 管口导向轮

c) 三脚架

图 2.3-3 自动深度技术装置

2.3.5 MC-6320 配置信息

主机		台	1
径向换换能器	收发一体带前置放大	只	2
平面换能器		只	2
平面换能器信号 线		根	2
提升计数器	连续记数	只	1
导向轮	半封闭	只	3
三脚架		套	1
仪器箱	高强度 ABS 塑料防水、防 潮、气密	套	1

U 盘	/	个	1
仪器合格证	/	张	1
仪器保修卡	/	张	1
连接控制线	主机记数器	个	1
装箱清单	/	张	1

2.3.6 MC-6310 配置信息

主机		台	1
平面换能器		只	2
平面换能器信号 线		根	2
仪器箱	高强度 ABS 塑料防水、防 潮、气密	套	1
U盘	/	个	1
仪器合格证	/	张	1
仪器保修卡	/	张	1
连接控制线	主机记数器	个	1
装箱清单	/	张	1

2.4 主要性能指标

MC-6310 和 MC-6320 主要性能指标对比

项目		技术参数	
超	产品型号	MC-6320	MC-6310
声	通道数	二通道	一通道
测	主控方式	ARM A8 1GHz	ARM A8 1GHz
桩	操作系统	WinCE 中文系统	WinCE 中文系统
仪	发射方式	连续激发/单次激发	连续激发/单次激发
主	显示模式	8 寸工业高亮宽温	8 寸工业高亮宽温
机		触摸液晶屏	触摸液晶屏
性	储存模式	电子硬盘(16G)	电子硬盘(16G)
能	采样间隔	0.03 μ s~1024 μ s	0.03 μ s~1024 μ s
指	声时测量精度	0.03 μ s	0.03 μ s
标	记录长度	0.5~8k	0.5~8k
	声时测读范围	0.1~2000ms	0.1~2000ms
	发射电压	50/250/500/1000 可	50/250/500/1000
	(v)	调	可调
	增益动态范围	90dB	90dB
	增益控制精度	0.4dB	0.4dB
	接收灵敏度	≤10 μ V	≤10 μ V

	增益控制精度	0.4dB	0.4dB
	发射脉宽	20us	20us
	频带宽度	2~500kHz	2~500kHz
	数据传输方式	USB2.0 高速接口 U	USB2.0 高速接口 U
		盘传输	盘传输
	供电方式	内置锂电池(≥8	内置锂电池(≥8
		小时)	小时)
	工作温度/湿度	-10°C~+45°C	-10°C~+45°C
	主机尺寸	260×217×56mm	260×217×56mm
	主机重量	2.1kg	2.1kg
ي ت	计数装置	4 线槽	
冻 度 计	方向	双向计数	
ī 数 装	分辨率	0.3cm	
置技	测点间距	1cm~100cm 可选	
不 指 坛	最大提升速率	6 剖面,最大	
ባሆ		60m/min	

2.5 环境要求

为了更好地使用本仪器,请您在使用仪器前仔细阅读章节内 容。

2.5.1 工作环境要求

■ 工作温度: -10°C-45°C;

- 工作湿度: ≤80%RH;
- 防磁: 远离强电磁场;

防热:避免接触或靠近超高温物体、避免过长时间强光直射;

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采 取必要的防护措施;

减少干扰:检测现场旁边避免有能产生强磁场、电场的机械设备作业;

防水浸: 仪器采用防水溅设计,有水滴溅到仪器表面时可以用纸巾或抹布擦干净即可,但是仪器不能浸没在水中或长时间 雨淋。

2.5.2 贮存环境要求

■ 环境温度: -10°C-60°C;

■ 相对湿度: ≤90%RH;

■ 不用时请将仪器放在仪器箱中,在通风、阴凉、干燥环境 下保存,不得长时间阳光直射;

■ 若长期不使用,应定期通电并开机检查。

2.6 仪器维护保养

2.6.1 防 震

防止碰撞和跌落,运输时需装入仪器箱并进行适当包装;

2.6.2 防高温

避免阳光过长时间暴晒,远离热源;

2.6.3 防腐蚀

贮存时要求相对湿度不超过 90%, 无腐蚀性气体;

2.6.4 电 源

① 仪器采用内置专用充电器对仪器内锂电池进行供电,若完 全充满,可连续工作 8 小时以上。

使用时请注意电量指示,如果电量不足时,则应尽快采用 外部电源(交流电源或外部充电电池)对仪器供电,否则可能会造 成突然断电导致测试数据丢失或者损坏。

④ 如用交流电源供电,则应确保外接电源为 AC220±10%V, 否则会造成 AC-DC 电源模块的损坏。

禁止使用其他电池或者电源为本仪器供电。

2.6.5 充 电

① 用本机配套的 AC-DC 电源模块为内部电池充电,先将模块的直流输出口插到仪器的充电口上,再将模块的电源插头插到插座(220V)中,此时仪器前面板上的充电指示灯(红色)亮;若仪器处于开启状态,五个电量指示灯全亮;

2 当指示灯由红色变暗时,表示内置电池将要充满;当指示灯熄灭时,则表示电池已经充满;

④ 电量指示灯为五格绿色指示灯,亮着的指示灯的多少反应 电量的多少,当只亮一个指示灯时,请尽快充电;

● 为了保证电池完全充满,请确保连续充电 6~8 小时,同时 不要在超过 30℃的环境下对仪器充电;

仪器长期不用,内部电池会自然放电,导致电量减少,使
 用前应再次充电;

5 充电过程中仪器和 AC-DC 电源会有一定发热,属正常现象,应保持仪器、AC-DC 电源或充电器通风良好,便于散热;

不得使用其它电源适配器对仪器充电,否则有可能对仪器 造成破坏。

2.6.6 内置锂电池

内置锂电池的寿命为充放电 1000 次左右,接近电池充放电寿 命时,如果发现电池工作不正常(根本充不上电、充不满或每次充 满之后使用时间很短),则很可能是充电电池已损坏或寿命已到, 应与我公司联系,更换新的电池。禁止将电池短路或靠近高温热 源。

2.6.7 径向换能器

强烈的冲击或剧烈的震动都会导致径向换能器的性能下降或损坏,所以应防止径向换能器从高处跌落或被压在重物之下;换能器 表面应尽量避免强腐蚀性物质沾染,每次使用后最好用清水冲洗一 遍,待干燥后再进行贮存。

测试过程中,应尽量避免电缆与底面或者桩头钢筋的摩擦,以 免电缆磨损造成进水或者深度标记不清晰。

2.6.8 仪器主机保养

每次使用完本仪器后,应该对主机、换能器、深度记录装置等 进行适当清洁,以防止水、泥等进入仪器插座,从而导致仪器的性

能下降或损坏。在清洗深度记录装置之后,请保证深度记录装置完 全干燥后再进行使用。

2.7 责任

本仪器为精密检测仪器,当用户有以下行为之一或其它人为破 坏时,本公司不承担相关责任。

- 违反上述工作环境要求或存储环境要求;
- 未按本操作说明操作;
- 在未经允许的情况下擅自打开机壳,拆卸任何零部件;
- 人为或意外事故造成仪器严重损坏。

3 启动画面

打开仪器上方电源键,约 10 秒钟后,仪器进入主界面,如图 2.7-1 所示。

	📢 铝砂利技		
	声波透射法测桩 超声回弹综合法测强		
	不密实区和空洞检测 超声法裂缝深度检测		
触摸屏校正 软件升	+级 软件版本	2013年2月22日	14.53

图 2.7-1 主界面

主界面主要分为两部分:点击橙色按键可以分别使用仪器所提 供的测试功能,本仪器提供声波透射法测桩、超声回弹综合法测 强、不密实区和空洞检测和超声法裂缝深度检测这四种测试功能; 主界面下方灰色按键为仪器通用功能,如触摸屏校正、软件升级、 时间设置等。

3.1 触摸屏校正

触摸屏校正分为正常条件和非正常条件校正,可以保证任何条 件下触摸屏的点击准确性。

3.1.1 正常条件校正

点击触摸屏校正按键,会提示是否进入触摸屏校正界面,点击 确定即可进入校正程序,依次按住屏幕提示的十字光标,即可完成 触摸屏校正,如图 3.1-1 和图 3.1-2 所示。

	📎 铝创和技		
	声波透射法测桩		
	是否进入触摸屏校正程序的		
	取消 肥だ 仏衣 延 休 又 取の	确定	
	л 3 <mark>с н с ч н с ч</mark>	si wa kw	
触摸屏校正	软件升级 软件版本	2013年2月22日	14.53

图 3.1-1 触摸屏校正提示

图 3.1-2 触摸屏校正界面

3.1.2 非正常条件校正

非正常条件是指触摸屏准度出现较大偏差,经过尝试根本不能 定位到需要点击的区域,此时需要借助 U 盘和我们提供的 U 盘中 可自动运行的校正程序进行校正。获取程序的方法可以参考附录 B 所介绍的步骤。

- 准备 U 盘和 U 盘触摸屏校正程序;
- 将 U 盘插入仪器前侧面板的MSB 接口中;
- 稍等几秒钟,仪器会自动探测 U 盘中校正程序,然后会
 启动校正程序;
- 校正步骤同正常条件校正步骤 3、步骤 4。

3.2 软件升级

仪器提供从 U 盘直接升级应用功能,使用简单方便,将准备 好的升级 U 盘插入仪器上方 MSB 接口中,然后点击软件升级按 键,系统会检测 U 盘的升级程序是否完整,然后进入升级主程 序,如图 3.2-1 所示。

彩 招创科技	升级中心
检测U盘状态 ✓ 检测升级文件完整性 ✓ 检测机内软件完整性 ✓ 机内软件成本:20130220.1.0 升级文件版本:20130220.1.0	
(HAHQ) (IIMA)	(返回主权序)

图 3.2-1 升级主程序

确认升级版本之后,点击开始升级,升级完成后系统会自动重 新启动,重新启动后请点击主界面的软件版本按键,查看软件版 本,确认是否升级成功。

3.3 软件版本

点击**软件版本**按键,会弹出软件版本对话框,可以查看当前 系统应用的版本。版本前部为软件版本发布时间,后部为软件主版 本号,如图 3.3-1 所示。

	% 铝砂形技	
) III MANAN MARK	声波透射法测桩	
	软件版本 , 20130220.1.0	
	K出广" /山 衣 3胜 /木 12、12 /X)	确定
i ii		
触摸屏校正	软件升级 软件版本	2013年2月22日 14:56

图 3.3-1 查看软件版本

3.4 设置系统时间

点击主界面右下部日期和时间的任何位置,弹出时间设置界 面,点击可以修改系统时间,设置完成后需要手动重新启动仪器时 间设置才能生效,如图 3.4-1 所示。

	% 铝砂形技	
	声波透射法测桩	
	2013 年 2 月 22 日 14 ; 56 确定 取油	
	超声法裂缝深度检测	
触摸师	校正 软件开级 软件版本 2013年2月22日	14.56

图 3.4-1 系统时间设置

4 通用功能

仪器有一些通用功能,在四种测试软件中设置相同,功能相同,所在的位置相同,在这里做统一说明。

4.1 数字键盘

点击仪器界面需要输入数字的位置,会弹出数字键盘,提供输入整数,浮点数及正负数功能,输入完成后直接点击确定按键,如 错误!未找到引用源。所示。

图 4.1-1 数字键盘

4.2 字母键盘及中文输入法

点击仪器界面需要输入字母及中文的地方,弹出字母及中文输入界面,可以输入任意字母和一些特殊的符号,点击拼音按键,切换到拼音输入界面,如图 4.2-1 所示。

铭创科	技														ł	-	補	除
1	2		3	3				5		6		7		8		9		0
Q	N	(E		F	2		Г		Y		U		1		0		Р
	A		S)	F		0	3	ŀ	ł	J		k		L		
	Z		Х		;		/	E	3		1	M	1	#		-		
英	文	拼	谙											取	悄	确测	È	

图 4.2-1 字母键盘

4.3 采样长度

在测试界面点击参数按键,进入参数设置界面,点击采样长度,进入采样长度设置界面,仪器提供512、1024、2048 这四种 采样长度设置,如图 4.3-1 所示。

图 4.3-1 采样长度设置

4.4 采样周期

在测试界面点击**参数**按键,进入参数设置界面,点击采样周期,进入采样周期设置界面,仪器提供 0.06µs-1024µs,如图 4.4-1 所示。

图 4.4-1 采样周期

4.5 发射电压

在测试界面点击参数按键,进入参数设置界面,点击发射电压,进入发射电压设置界面,仪器提供 50V、250V、500V 和 1000V 四种电压选择,如图 4.5-1 所示。

图 4.5-1 发射电压设置

4.6 零声时设置

在测试界面点击参数按键,进入参数设置界面,点击零声时 校正,进入零声时设置界面,可以对仪器通道1和通道2的零声时进行设置,如图 4.6-1 所示。

通道 1	0.00 us	通道 2	0.00 us
			确定

图 4.6-1 零声时设置

4.7 显示设置

在测试界面点击参数按键,进入参数设置界面,点击仪器显示设置按键,进入程序显示设置界面,可以对仪器显示颜色等信息进行设置,设置完成后需要重新启动软件,如图 4.7-1 所示。

图 4.7-1 软件显示设置

4.8 恢复出厂设置

在测试界面点击参数按键,进入参数设置界面,点击恢复出 「设置按键,弹出恢复出厂设置确认对话框,点击确定按键,软 件自动加载所有默认设置,恢复成功后需要重新启动软件,如图 4.8-1 和图 4.8-2 所示。

该设置需要重启程序,数	据如未保存,请点;	击取消返回保存
	取消	确定

图 4.8-1 恢复出厂设置

📢 铭创科技

图 4.8-2 恢复出厂设置成功

4.9 文件管理

在软件测试主界面点击**文件**按键,弹出文件管理对话框,如 图 4.9-1 所示。

工程列表 工程名称 铭创科技 模拟数据桩	全选	■ 柱数 ■ 2 1	大小 0.07 MB 0.34 MB	<mark>测试时间</mark> 2013- 1- 3 11: 9 2013- 1- 3 11:18		打开文件取消
						伊输文件
基桩列表 基桩名称	全选		大小	测试时间		如你
1.08			0.34 MB	2013- 1- 3 11:20		
					▼	已用 0MB 未用 15360MB 可检测约 10240根基桩

图 4.9-1 文件管理

文件管理主界面会显示工程和基桩(构件)列表,点击工程名称,该工程下对应的基桩(构件)文件会显示出来。名称底纹变蓝 表示选中该信息,选择可以多选。

4.9.1 打开文件

选中相应的基桩(构件),点击**打开文件**按键,软件会打开 相应的文件,注意名称不能够多选。

4.9.2 传输文件

仪器提供测试数据直接传输到 U 盘中,传输时可以用仪器配件 中提供的 U 盘,也可以用任意MSB2.0 接口的 U 盘。传输文件仅复 制文件到 U 盘,不删除设备中的数据。具体操作步骤如下:

■ 选择要传输的工程或基桩文件,可以任意多选或单选;

- 将 U 盘插入仪器顶端面板的MSB 接口中, U 盘上的指示灯会 点亮(以仪器配件中的 U 盘为例);
- 点击传输文件按键,系统会自动检测 U 盘是否准备完毕,若
 完毕则弹出传输等待进度条,进行传输,此时 U 盘指示灯闪
 烁,请耐心等待;
- 传输完毕,传输进度条消失,U盘指示灯停止闪烁,此时传输 完毕,可以直接拔出U盘。

1)若∪盘插入仪器MSB接口,∪盘指示灯不亮,请检查∪盘是否 已经损坏或重新启动仪器重试或更换其他∪盘重试;

2) 传输过程请勿进行其他操作,保证传输成功;

3) 若传输过程出错,请检查 U 盘是否有足够的空间;

4) 传输过程若出现其他错误,请联系本公司售后人员,请勿自行

处理, 以免造成数据丢失。

4.9.3 删除

选中工程或者基桩(构件)文件,点击**删除**按键,软件提示 是否删除文件,点击**确定**即可删除。

4.9.4 仪器存储空间显示

文件管理右下角显示当前仪器已用存储空间,未用存储空间, 计算出的剩余空间可测基桩(构件)数目。

4.10 数据采样

参数设置完成后,点击测试主界面的**采样**按键进入采样状态。

4.10.1 波形移动

调整波形左右移动即调整波形延时量,采样状态下点击主界面 右侧**左移**按键(延时量增大),波形向左移动;点击**右移**按键(延时

量减小),波形向右移动。

4.10.2 增益调整

调整通道增益即放大缩小波形,采样状态下点击主界面右侧**放** 大按键,该剖面增益值增大,波形放大;点击**缩小**按键,该剖面增 益值减小,波形缩小。

4.10.3 基线调整

采样状态下,点击**基线**按键,基线状态激活√基线,点击 ↑ 按键,波形基线上移;点击 ↓ 按键,波形基线下移;点击 √基线 按键退出基线调整,按键变回"基线"

4.10.4 判读线调整

判读线即判读阀值,搜索算法仅对判读线以外的波形进行判读, 认为判读线以内的波形为噪声。当现场测试环境或测试对象等较差 时,都会导致测试噪声增大,此时可以调整判读线提高仪器自动判 读的准确性。采样状态下,点击**判读线**按键,判读线调整状态激活, 点击 按键,判读线向外扩张;点击 按键,判读线向内收缩。 4.10.5 波形搜索

仪器提供精准的首波判读算法,可以显著地提高测试效率。在 首次采样时,仪器都会进入自动搜索状态,搜索首波成功后,退出 搜索状态。也可以手动激活搜索状态,选中一个剖面,点击右侧 搜索按键,激活选中剖面的搜索状态,搜索到该剖面首波后搜索

退出;点击右侧**全选**按键,选中所有剖面,点击**搜索**按键,对所 有剖面进行搜索。

4.11 零声时校正

仪器系统存在一定的传输延时,即从发射到接受存在一定的时 间延时,所以测试时需要将这段时间去除,这段时间就是系统零声 时。校正零声时,每个剖面都需要校正。校正分为两种情况,平面 换能器校正和径向换能器校正。

4.11.1 平面换能器校正

将两个平面换能器与仪器连接,将两根换能器底部平面紧贴在
 一起,宜使用黄油等耦合剂耦合,如图 4.11-1 所示;

图 4.11-1 平面换能器校正

- 进入参数设置将仪器发射电压调整为 50V;
- 进入零声时校正对话框,设置要测试平面零声时为0;
- 点击确定进入测试主界面,点击采样,找到该剖面首波,调 整增益、延时等参数,使仪器能自动判断到首波,记下此时该 剖面的声时 T;

返回零声时设置对话框,将该剖面零声时修改为刚才记录的声时T:

重复以上步骤,分别测试 6 个剖面的零声时。

4.11.2 径向换能器校正

将两根径向换能器与仪器连接,将两根换能器置于装满清水的水桶中,如有条件可以先将两根基桩声测管紧贴放入水桶中, 再将换能器放入声测管中,如图 4.11-2 所示;

- 进入参数设置将仪器发射电压调整为 50V;
- 进入零声时校正对话框,设置要测试平面零声时为0;

- 点击确定进入测试主界面,点击采样,找到该剖面首波,调
 整增益、延时等参数,使仪器能自动判断到首波,记下此时该
 剖面的声时 T;
- 返回零声时设置对话框,将该剖面零声时修改为刚才记录的声时T;
- 重复以上步骤,分别测试 6 个剖面的零声时。

5 声波透射法测桩

本功能依据

《建筑基桩检测技术规范》(JGJ106-2003)

《公路工程基桩动测技术规程》JTG/TF81-01-2004

《铁路工程基桩检测技术规程》TB 10218-2008

《广东省标准建筑地基基础检测规范》(DBJ15-60-2008)

对桩基完整性进行检测,并对检测数据进行计算处理与判别。

5.1 测试主界面

5.1.1 概述

测试主界面是测试程序的主要功能模块,大部分的操作都在此 界面内可以完成,如图 5.1-1 所示。整个界面都可以触摸操作,主 要分为两个区域:

左侧为波形和图形显示区域,用来显示波形图、采集参数、声 参量、统计图形等波形信息;

右侧和下部为功能按键区域,主要有深度计数显示,采集、参 数设置等按键。

💽 铭创科技

图 5.1-1 测试主界面

5.1.2 波形图形显示区域

波形图形显示区域(以下简称**区域**)可以显示单剖面、2 剖面 波形,统计图形可以显示深度统计图形,波列图,显示方式可以横 排竖排自由切换。单个区域如图 5.1-2 所示。

图 5.1-2 单剖面区域

- 剖面名称,在单剖面区域左上方显示当前波形的剖面名
 称;
- 波形显示,上部显示的是波形区域,用手指单击波形区域,波形区域会变成选中的颜色,然后按住当前波形左右拖动,可以左右移动波形;
- 声参量信息,区域中部显示的是当前波形的声参量信息。 L代表当前剖面两个声测管间的跨距,T代表当前首波的 声时,V代表当前首波的波速,A代表首波的幅度,G代 表当前波形的增益值,最右测图形是增益值的图形显示;
- 统计图形显示区域,可以显示两种图形,深度-速度/深度-幅值/深度-PSD 统计图和波列图,这两种图形可以通过按 键区域最下方两个按键切换;

5.1.3 功能按键区域

- 深度显示,显示当前自动深度计数装置深度、测试模式、 测点间隔以及测试方向等信息,测试模式分为自动和手动 两个模式。
- 自动模式,测试时连接好自动计数装置,在调整完波形后,只需输入起始深度和测点间隔,然后提升换能器,系统自动侦测提升高度,自动记录数据。
- 手动模式,测试时无需连接自动计数装置,在调整完波形后,只需输入起始深度,然后提升换能器,读取线缆上刻度,每到采样间隔时,点击存点按键即可存储一道波形。(测试速度较慢,不推荐)
- 测点间隔,测试时每个测点之间的间隔,详见 4.4 节。
- 采样按键,在设置完参数后,点击采样按键开始采样, 若未初始化参数,点击采样按键,会弹出参数设置界 面。
- 停止按键,采样开始后,停止按键有效,点击停止采
 样,采样未开始时,停止按键无效。
- 存点按键,在自动测试模式下,采样时点击存点按键, 弹出保存第一个测点对话框,输入第一个测点的深度,然 后继续测试;在手动模式下,点击一次存点按键,保存 一个测点数据。

- 保存按键,测试完毕后点击保存按键,可以将数据永久保存到内部存储卡中。
- 参数按键,新建测试下,点击参数按键弹出参数设置对 话框,可以设置各种参数;在打开文件状态下,可以查看 已测试文件的参数信息。
- **加密**按键, 详见 3.7 节
- 显示按键,在 4-6 剖面测试的情况下,点击显示按键,会 自动切换,波形图形显示区域的剖面排列方式。
- **文件**按键,点击**文件**按键,弹出文件管理对话框。
- 当前剖面,显示当前选中的剖面名称。
- 搜索按键,采样时点击按键,有搜索按键功能,停止采 样时,该按键无效。
- **全选**按键,点击按键选中所有剖面。
- **放大**按键,采样时点击按键可以增加该通道增益,放大 波形。
- 缩小按键,采样时点击按键可以减小该通道增益,缩小 波形。
- **左移**按键,采样时点击按键可以增大该剖面延时,左移 波形。
- **右移**按键,采样时点击按键可以减小该剖面延时,右移 波形。

- 基线按键,采样时点击按键选中,再点击方向 ↑ ↓ ↓
 键可以调整基线。
- ▶j读线按键,又称阀值按键,采样时点击按键选中,再
 点击方向 ↑ ↓键可以调整判读线,判断算在仅在判
 读线之外起作用,判读线以内的波形不做自动判读。
- 方向键,在不同环境下,方向键有不同的作用,一般都是 左右上下移动标志线的作用。
- **手工判读**按键,在停止采样时,回放波形,手动调整判 读线完毕后,点击该按键,可以手工修正判读结果。
- 曲线图按键,点击该按键可以将统计图形切换到曲线图 模式。
- **波列图**按键,点击该按键可以将统计图形切换到波列图 模式。

5.2 参数设置

参数设置主要是对检测对象一些测试特征的设置和对仪器自身 参数的设置。可以通过测试主界面点击参数按键进入参数设置对 话框。参数设置对话框如图 5.2-1 所示。

📢 铭创科技

MC-6320/10 非金属超声检测仪

工程名称	铭创科技 1-1_4	选择 新	建 ^{东 †}	PP2
声测管数设计桩长	3 测点间 100.00m	距 0.25m		
通道选择	通道 1 通道 1 通道 2	采样周期 发射电压	0.5us	计数精度校正 零声时校正
剖面名称	1-2 1-3	采样长度	512	
测试跨距	1000mm 1000mm	测试模式	自动 JGJ 106-2003	仪器显示设置 仪器参数设置
恢复出厂设	置重置		取消	确定

图 5.2-1 参数设置

5.2.1 工程信息设置

- 工程名称,点击后面的文本框会弹出字符键盘,支持中英文数 字混合输入,工程名称自动缺省上一次设置的名称。
- 基桩名称,点击后面的文本框会弹出字符键盘,支持中英文数 字混合输入,基桩名称缺省自动在上一次设置基桩名称的基础 上加上数字 1。
- 声测管数,根据待测基桩中预埋的声测管根数设定,可以设置
 2 管、3 管、4 管。如图 5.2-2 所示。

图 5.2-2 声测管设置

测点间距,测点间距是指每两个测点间的距离。点击后面的文本框弹出测点间距设置对话框,如图 5.2-3 所示。推荐选择
 0.15m、0.20m、0.25m。

图 5.2-3 测点间距

- 设计桩长,点击后面的文本框弹出数字键盘,可以设置基桩的
 设计桩长,桩长精确到厘米。
- 测试跨距,声测管外壁净间距,单位为毫米。系统会根据声测 管数和通道对应的声测管关系,自动生成对应的测试跨距选 项。点击相应剖面名称下面的文本框,弹出数字键盘设置测试 跨距,跨距单位为毫米(mm)。

🥣 测试跨距影响到声速等重要的声参量的准确性,请务必设置正确

声测管示意图,如图 5.2-4 所示。示意图表示的基桩的俯视 图,小圆圈代表声测管,根据声测管的数目变化,小圆圈的个 数会相应改变,用手指按住每个小圆圈可以拖动到基桩的任意 位置,小圆圈之间的连线代表两个声测管之间测试剖面位置。

图 5.2-4 声测管示意图

5.2.2 通道参数设置

通道选择,每个通道对应仪器前侧面上的通道插口,点击通道 弹出通道设置界面,如图 5.2-5 所示,可以选择通道 1、通道 2 及 双通道。

图 5.2-5 通道选择

设置测试跨距,如图 5.2-6 所示,点击剖面名称,可以选择通 道对应的剖面,点击测试跨距可以设置剖面对应的测试跨距。

图 5.2-6 设置测试跨距

采集参数, 详解第4章.

测试模式, 分为手动和自动两种模式。

计算标准,选择相应的检测规范,测试过程中将按规范实时对 数据进行分析处理。计算标准对话框如图 5.2-7 所示。

JGJ 106-2003	CECS 21:2000	
JTG/T F81-01-2004	TB 10218-2008	
SJG 09-2007	DBJ 15-60-2008	
	取消	

图 5.2-7 计算标准

5.3 加密测试

加密测试是指在测试过程中发现可疑区时,减小测点间距后对 可疑区进行密集测试。加密操作必须在采样状态下有效。如图 5.3-1

所示。

0.05 m	0.10 m	0.15 m	0.20 m
0.25 m	0.30 m	0.40 m	0.50 m
0.60 m	1.0 m		取消

图 5.3-1 加密测试对话框

具体操作方法如下:

- 在采样状态,点击测试主界面右侧加密按键,弹出加密对话框:
- 点击需要加密的数值,加密对话框小时;
- 提升换能器继续测试或者进行复测。

5.4 视图切换

仪器提供两种统计视图,分别为曲线视图和波列视图。

5.4.1 曲线视图

点击主界面又下方曲线图按键,进入曲线视图,如图 5.4-1 所示。

图 5.4-1 曲线视图

- 区域 1,是深度-幅值(H-A)曲线,横坐标从左至右幅值依次增大,纵坐标表示深度 H,最左侧红色字体表示图形当前自动计算出的幅值临界值,当测试对象在某一深度出现缺陷时,该深度的幅值曲线会出现红色缺陷区域,方便观察;
- 区域 2,是深度-声速(H-V)曲线,横坐标从左至右速度依次增大,纵坐标表示深度 H,最左侧红色字体表示图形当前自动计算出的速度临界值,当测试对象在某一深度出现缺陷时,该深度的声速曲线会出现红色曲线区域;
- 区域 3, 是深度-PSD(H-PSD)曲线, 横坐标从左至右 PSD 数值依 次增大, 纵坐标表示深度 H;
- 区域 4,区域 4 右侧在测试时,实时表示当前换能器的深度,
 左侧表示 当前图形的深度范围;
- 深度标识线,在停止采样时,点击图形区域,会出现深度标识线,标示当前点击的深度,同时,单道波形区域也会出现当前

47 / 106

深度的波形信息。点击主界面右侧的上下方向按键,可以向上 或向下移动标识线。

5.4.2 波列视图

点击主界面又下方波列图按键,进入波列视图,如图 5.4-2 所

示。

图 5.4-2 波列视图

- 表示方法,波列显示时,波形的幅值和延时量都是归一化显示的;
- 在停止采样时,点击波列图形区域,当前选中波形加粗变色表示,并在左侧显示当前测点波形的深度值;
- 在停止采样时,点击主界面右侧上下方向键可以移动选择的当前波形,点击主界面右侧左右键可以上下翻页。

5.5 数据保存

仪器保存数据分为自动保存和手动保存。

5.5.1 自动保存

自动保存仅在正常顺序测试条件下有效,在测试完成,换能器 提升至桩头即换能器深度表示为 0.0m 时,会触发仪器自动保存机 制,提示是否测试完毕,点击确定按键表示测试完毕,弹出保存进 度条,数据存储完毕后,进度条消失。

5.5.2 手动保存

手动保存在新测试项目或修改现有数据时触发手动保存机制, 需要手动保存是,主界面保存按键会开始闪烁,提示需要保存,点 击保存按键后,弹出保存进度条,保存完毕后保存进度条消失,保 存按键停止闪烁。

5.6 深度技术精度校正

由于自动计数装置长时间使用,会出现磨损的现象,所以会影 响自动计数装置记录的准确性,所以需要计数精度校正功能。校正 之前请确认不是错误操作导致的计数不准确的现象。

5.6.1 快速校正

仪器出厂已经全部校正过配套的计数装置,并内置了校正备份。 快速校正即把备份的精度覆盖现在的精度数值。

具体步骤如下:

■ 主界面点击参数按键进入参数设置界面;

- 在参数设置界面点击
 计数精度校正
 按键,进入计数精度校正
 界面;
- 点击恢复默认按键,弹出确定对话框,点击确定按键;
- 提示恢复成功,手动重启仪器。

5.6.2 常规校正

若仪器内部备份的校正精度也不准确了,需要进行常规校正, 常规校正至少需要一根径向换能器、计数装置和仪器配合操作方可 完成校正。

校正步骤如下:

- 将换能器、计数装置及仪器连接完毕;
- 将换能器放至基桩的某一深度,记录线缆上的刻度 H1;
- 点击仪器主界面参数按键进入参数设置界面;
- 点击参数设置界面的**计数精度校正**按键进入校正界面;
- 点击 H1 后面的文本框设置读取的 H1 的值;
- 点击开始提升按键,并提升换能器至 H2(线缆刻度)深度,
 确保 H1-H2≥5m;
- 在 H2 后面文本框中输入 H2 的值;
- 点击修正完毕按键确认修正精度,然后手动重启仪器,修正完
 毕。

5.7 测试指南

5.7.1 仪器连接

将三脚架调整到合适的高度,并将深度记录装置安装在三脚架的云台上;如图 5.7-1 所示。

图 5.7-1 深度记录装置安装

将各声测管中的换能器调整到相同的高度,打开深度记录装置 上的压轮,然后将多根换能器信号线放入深度记录滑轮槽中, 并将压轮放下,如图 5.7-2 所示。

b) 信号线入槽

务必注意计数轮的方向,测试时,应该将计数轮上收线柱朝着被测的桩基,若方向装反,测试时仪器就不能实时反应当前传感器的深度;

c)放下压轮

📢 铭创科枝

图 5.7-2 信号线安装

使用平测法检测时,一定要注意各声测管中的换能器所放下的深度是否相等,如不相等,则应进行调整,务必保证各换能器处于同一水平面上。

使用斜测法检测时,应确保一只换能器与其他换能器保持一定的高度差。如图 5.7-3 所示。

图 5.7-3 测点布置示意图

- 将各声测管中的换能器信号线连接到测桩仪前面板的相应通道。
- 将深度计数装置与测桩仪左侧面板上的"深度计数装置"接口 相连。

5.7.2 新建测试文件

■ 打开仪器电源,等待进入测试主界面;

- 点击右侧参数按键,进入参数对话框,设置测试主要参数,
 具体参数依据测试对象而定;
- 参数设置完毕点击确定按键进入测试界面,点击采样按键开始采样;
- 此时进入采样调整状态,系统自动进入搜索状态,若搜索不成功,需要手动微调波形,可以通道左移,右移,放大,缩小等操作微调波形使仪器可以判读到首波;
- 调整完毕后点击存点保存第一个测点,输入此时换能器的位置,点击确定开始测试;
- 提升换能器,系统自动判断深度并自动根据测点间距保存波形数据;提升过程中需要观察波形首波是否判读准确,若不正确,可以停止提升,手动微调波形,然后再进行测试,若测试时发现测试对象有缺陷,可以将换能器回放到缺陷以下,然后进行复测,测试测试数据会覆盖以前测试的数据;
- 提升到桩头时,仪器自动提示是否测试完毕,点击确定自动保存数据,点击取消可以继续进行测试,测试完毕后点击保存 按键保存数据;
- 若需要继续测试新基桩,可按照 2-7 步骤重复测试,若测试完 毕可以直接关闭仪器。

保存按键闪烁时需要手动点击保存按键保存数据,若不保存, 可能会造成数据丢失。

测试完成后,将数据按照 4.9.2 节数据传输操作,将测试的数据 传输到 U 盘中,然后拷贝到电脑中,用本公司的《超声数据处理软件》进行数据处理。数据处理软件具体操作方法详见数据处理软件 说明书。

6 超声回弹综合法测强

本功能可以依据

全国:《超声回弹综合法检测混凝土强度技术规程》(cecs 02:2005)

北京:《回弹法、超声回弹综合法检测泵送溷凝土强度技术规程》(DBJ/T01-78-2003)

山东:《超声回弹综合法检测混凝土抗压强度技术规程》 (DBJ14/027-2004)

等技术规程结合回弹仪对混凝土的强度进行推定。

6.1 测试主界面

测试主界面是测试程序的主要功能模块,大部分的操作都在此 界面内可以完成,如图 6.1-1 所示。整个界面都可以触摸操作,主 要分为两个区域:

左侧为波形和图形显示区域,用来显示波形图、采集参数、声参量、统计图形等信息;

右侧和下部为功能按键区域,主要有采集、参数设置等按键。

图 6.1-1 测强主界面

6.1.1 测试示意图

测试示意图区域显示测试示意图,分别显示对测、平测和角测 测试示意图,示意图下方显示工程和构件信息。

6.1.2 测区列表

测区列表显示当前构件中的所有测区信息,按住某一测区或者选择测区中某一项,点击修改按键,弹出修改回弹值界面,输入 平均回弹值,点击确定按键,软件自动计算出测区的换算强度。

6.1.3 统计数据

测区列表下方为构建统计信息,主要显示构件数据的计算结果,推定值只有在所有测区都测试完毕并且计算出换算之后计算显示,如图 6.1-2 所示。

推	全值:	18.0	MPa		
最小测	区强度:	21.4	MPa		
强度	平均值:	28.0	MPa		
强度	标准差:	6.08	MPa		
强度离	异系数:	0.22			

图 6.1-2 构件统计信息

6.1.4 测点列表

测点列表显示所有测区中的所有测点声参量信息,测点根据输 入的测区分组显示。

6.1.5 功能按键区域

- **采样**按键,在设置完参数后,点击<mark>采样</mark>按键开始采样, 若未初始化参数,点击<mark>采样</mark>按键,会弹出参数设置界 面。
- 停止按键,采样开始后,停止按键有效,点击停止采 样,采样未开始时,停止按键无效。
- **存点**按键,点击存点按键,将当前波形数据保存到当前 测点中。

- 保存按键,测试完毕后点击保存按键,可以将数据永久 保存到内部存储卡中。
- 参数按键,新建测试下,点击参数按键弹出参数设置对 话框,可以设置各种参数;在打开文件状态下,可以查看 已测试文件的参数信息。
- **文件**按键,点击**文件**按键,弹出文件管理对话框。
- 搜索按键,采样时点击按键,有搜索按键功能,停止采 样时,该按键无效。
- **放大**按键,采样时点击按键可以增加该通道增益,放大 波形。
- **缩小**按键,采样时点击按键可以减小该通道增益,缩小 波形。
- **左移**按键,采样时点击按键可以增大该剖面延时,左移 波形。
- **右移**按键,采样时点击按键可以减小该剖面延时,右移 波形。
- 基线按键,采样时点击按键选中,再点击方向 ↑ ↓
 键可以调整基线。
- ▶j读线按键,又称阀值按键,采样时点击按键选中,再
 点击方向 ↑ ↓键可以调整判读线,判断算在仅在判
 读线之外起作用,判读线以内的波形不做自动判读。

59 / 106

- 方向键,在不同环境下,方向键有不同的作用,一般都 是左右上下移动标志线的作用。
- 判读按键,在停止采样时,回放波形,手动调整判读线 完毕后,点击该按键,可以手工修正判读结果。
- **复测**按键,选中已有测点,点击复测按键,可以对当前 测点进行复测。
- 修改按键,当选中测区时,点击修改按键,可以修改测区的平均回弹值;当选中测点列表时,点击修改按键,可以修改测点的测距。
- 删除按键,当选中测区时,点击删除按键,可以删除整 个测区数据;当选中测点列表时,点击删除按键,可以删除单个测点数据。
- 分析按键,测试完成后,点击分析按键,可以对计算参数进行设置后重新计算统计值。

6.2 参数设置

参数设置主要是对检测对象一些测试特征的设置和对仪器自身 参数的设置。可以通过测试主界面点击参数按键进入参数设置对 话框。参数设置对话框如图 6.2-1 所示。

图 6.2-1 测强参数设置

6.3 计算参数

计算参数设置主要是在测试完成后设置计算参数。可以通过测试主界面点击分析按键进入计算参数设置对话框。计算参数设置对话框如图 6.3-1 所示。

分析参数				
测试规范	全国	构件骨料 碎石	测试角度	水平0°
测试面	侧面	设计强度 C40	混凝土	普通
系数A	0.01620	系数B 1.65600	系数C	1.41000
系数D	0.00000	$f_{cv,i}^{c} = AV_{ai}^{B}R_{ai}^{C}$		
声速修正η	1.00	强度修正 无修正	1.00	
			计算	取消

图 6.3-1 分析参数设置

6.3.1 测试规范

软件提供全国标准计算参数和部分地区规范计算参数,还可以 自己定义计算参数,如图 6.3-2 所示。

全国	北京	上海	山西
四川	江苏	陕西	山东
			取消

图 6.3-2 测试规范

6.3.2 构件骨料

骨料选择可以选择卵石和碎石。

6.3.3 测试角度

软件提供常用的几种测试角度,不同测试角度,计算结果不同,计算公式详见规范,如图 6.3-3 所示。

图 6.3-3 测试角度

6.3.4 测试面

软件提供侧面、顶面、底面 3 种测试面, 如图 6.3-4 所示。

图 6.3-4 测试面选择

6.3.5 设计强度

点击混凝土强度,弹出混凝土强度选择界面,如图 6.3-5 所示。

图 6.3-5 混凝土强度选择

6.3.6 声速修正

声速修正系数,仅在平测状态下,可以使用。

6.3.7 强度修正

软件提供了无修正、芯样、同条件试块三种强度修正方式。

6.4 数据保存

仪器保存数据分为自动保存和手动保存。

6.4.1 自动保存

自动保存仅在正常顺序测试条件下有效,在测试完成时,会触 发仪器自动保存机制,提示是否测试完毕,点击确定按键表示测试 完毕,弹出保存进度条,数据存储完毕后,进度条消失。

6.4.2 手动保存

手动保存在新测试项目或修改现有数据时触发手动保存机制, 需要手动保存是,主界面保存按键会开始闪烁,提示需要保存,点 击保存按键后,弹出保存进度条,保存完毕后保存进度条消失,保 存按键停止闪烁。

6.5 测试指南

6.5.1 仪器连接

首先将发射电缆和接受电缆分别和平面换能器连接,然后将平 面换能器连接至仪器的发射通道和通道1(通道2)接口中,并检 查是否连接牢固,连接完成后即可进行测试。

6.5.2 新建测试文件

- 打开仪器电源,等待进入测试主界面;
- 点击右侧参数按键,进入参数对话框,设置测试主要参数,
 具体参数依据测试对象而定;
- 参数设置完毕点击确定按键进入测试界面,点击采样按键开始采样;
- 此时进入采样调整状态,系统自动进入搜索状态,若搜索不成功,需要手动微调波形,可以通道左移,右移,放大,缩小等操作微调波形使仪器可以判读到首波;
- 调整完毕后点击存点保存按键保存测点;
- 测试完毕后,仪器自动提示是否测试完毕,点击确定自动保存 数据,点击取消可以继续进行测试,测试完毕后点击保存按 键保存数据;
- 若需要继续测试新构件,可按照 2-6 步骤重复测试,若测试完 毕可以直接关闭仪器。

保存按键闪烁时需要手动点击保存按键保存数据,若不保存, 可能会造成数据丢失。

6.5.3 数据处理

测试完成后,将数据按照 4.9.2 节数据传输操作,将测试的数据 传输到 U 盘中,然后拷贝到电脑中,用本公司的《超声回弹综合法 数据处理软件》进行数据处理。数据处理软件具体操作方法详见数 据处理软件说明书。

7 不密实区和空洞检测

本功能可依据《超声法检测混凝土缺陷技术规程》(CECS21: 2000)对混凝土内部不密实区及空洞、混凝土结合面质量及钢管混 凝土内部缺陷进行检测,并对检测数据进行计算处理与判别。

7.1 测试主界面

测试主界面是测试程序的主要功能模块,大部分的操作都在此 界面内可以完成,如图 7.1-1 所示。整个界面都可以触摸操作,主 要分为两个区域:

左侧为波形和图形显示区域,用来显示波形图、采集参数、声参量、统计图形等信息;

右侧和下部为功能按键区域,主要有采集、参数设置等按键。

30:1 <u>ЛЛППЛЛ</u>	测点	测距	声时	声速	幅值	頻率	
						-	采样
	3:2	680	174.5	3.897	77.8	45.9	
	3:1	680	169.0	4.024	78.3	44.9	
I N/ L (I / I / I / I / I / I / I / I / I / I	2:1	680	175.0	3.886	78.3	45.4	存点
	2:2	680	178.0	3.820	78.0	45.4	14 /00
	2:3	680	172.5	3.942	75.7	44.9	
	2:4	680	167.5	4.060	69.1	51.3	放大
L=660mm I=177.00µs V=3.642km/s A=77.6dB G=65.7dB	2:5	680	167.5	4.060	70.0	36.1	ار جنع
1 2 3 4 5 6 7	2:6	680	169.0	4.024	68.7	36.1	新的小
	2:7	680	170.0	4.000	71.0	39.1	左移
	1:7	680	170.5	3.988	72.3	41.5	
	1:6	680	173.0	3.931	74.8	44.4	右移
	1:5	680	171.5	3.965	72.6	42.5	
	1:4	680	162.5	4.185	69.6	35.6	搜索
	1:3	680	165.5	4.109	69.1	39.6	2022 (144)
4 ·····••	1:2	680	186.0	3.656	71.4	42.0	
	1:1	680	197.5	3,443	74.2	40.0	制漆
		平均(直 临界	り しょうしん しょうしょう しょう しょう しょうしょう しょう しょう しょう しょう し	际准差 召	寫差系数	7117
· ·····	声速	3.835	5 3.2	:09	0.240	0.063	保存
	幅度	74.59	9 66.0	568 557	3.039	0.041	
	물	44.00	4 40.1	020	1.578	0.035	
							退出
文件 参数 复测 修改 删除	异常点	ŧ	←	-	-	Ļ	t
不密实区和空洞检测						2013/	2/22 15:19

图 7.1-1 测缺主界面

7.1.1 测试示意图

测试示意图显示测点的布置分布以及当前测试测点,测试完成 或测试中以不同形状不同颜色动态显示异常点,如图 7.1-2 所示

图 7.1-2 异常点示意图

7.1.2 测点列表

测区列表显示当前构件中当前测区的所有测点的声参量,按住 某一测点或者选择测点中某一项,点击修改按键,弹出修改间距界 面,输入测试间距,点击确定按键,软件自动计算新的声参量信 息。

7.1.3 统计数据

测点列表下方为构建统计信息,主要显示构件数据整体的声参 量统计结果,包括平均值、标准差、离差系数和临界值,如图 7.1-3 所示。

	平均值	临界值	标准差	离差系数
声速	3.835	3.209	0.240	0.063
幅度	74.599	66.668	3.039	0.041
主頻	44.864	40.825	1.578	0.035

图 7.1-3 测缺统计信息

- 7.1.4 功能按键区域
 - 采样按键,在设置完参数后,点击采样按键开始采样, 若未初始化参数,点击采样按键,会弹出参数设置界 面。
 - 停止按键,采样开始后,停止按键有效,点击停止采
 样,采样未开始时,停止按键无效。
 - 存点按键,点击存点按键,将当前波形数据保存到当前 测点中。
 - 保存按键,测试完毕后点击保存按键,可以将数据永久 保存到内部存储卡中。
 - 参数按键,新建测试下,点击参数按键弹出参数设置对 话框,可以设置各种参数;在打开文件状态下,可以查看 已测试文件的参数信息。
 - **文件**按键,点击**文件**按键,弹出文件管理对话框。
 - 搜索按键,采样时点击按键,有搜索按键功能,停止采 样时,该按键无效。

- **放大**按键,采样时点击按键可以增加该通道增益,放大 波形。
- **缩小**按键,采样时点击按键可以减小该通道增益,缩小 波形。
- **左移**按键,采样时点击按键可以增大该剖面延时,左移 波形。
- **右移**按键,采样时点击按键可以减小该剖面延时,右移 波形。
- 基线按键,采样时点击按键选中,再点击方向 ↑ ↓
 ↓
 ↓
 ↓
 ↓
- 判读线按键,又称阀值按键,采样时点击按键选中,再
 点击方向 1 ↓
 键可以调整判读线,判断算在仅在判
 读线之外起作用,判读线以内的波形不做自动判读。
- 方向键,在不同环境下,方向键有不同的作用,一般都
 是左右上下移动标志线的作用。
- **判读**按键,在停止采样时,回放波形,手动调整判读线 完毕后,点击该按键,可以手工修正判读结果。
- **复测**按键,选中已有测点,点击复测按键,可以对当前 测点进行复测。
- 修改按键,当选中测点时,点击修改按键,可以修改测点的测距。

- **删除**按键,当选中测点列表时,点击删除按键,可以删除单个测点数据。
- **异常点**按键,测试完成后或测试中,点击异常点按键, 可以重新计算统计值并将异常点显示在测试示意图中。

7.2 参数设置

参数设置主要是对检测对象一些测试特征的设置和对仪器自身 参数的设置。可以通过测试主界面点击参数按键进入参数设置对 话框。参数设置对话框如图 7.2-1 所示。

图 7.2-1 测缺参数设置

7.3 计算参数

在参数设置界面中,点击判读方式,可以选择自动计算判定值 还是手动指定判定值,若手工指定,仅需在下方输入相应的判定值 即可。

7.4 数据保存

仪器保存数据分为自动保存和手动保存。

7.4.1 自动保存

自动保存仅在正常顺序测试条件下有效,在测试完成时,会触 发仪器自动保存机制,提示是否测试完毕,点击确定按键表示测试 完毕,弹出保存进度条,数据存储完毕后,进度条消失。

7.4.2 手动保存

手动保存在新测试项目或修改现有数据时触发手动保存机制, 需要手动保存是,主界面保存按键会开始闪烁,提示需要保存,点 击保存按键后,弹出保存进度条,保存完毕后保存进度条消失,保 存按键停止闪烁。

7.5 测试指南

7.5.1 仪器连接

首先将发射电缆和接受电缆分别和平面换能器连接,然后将平 面换能器连接至仪器的发射通道和通道1(通道2)接口中,并检 查是否连接牢固,连接完成后即可进行测试。

7.5.2 新建测试文件

- 打开仪器电源,等待进入测试主界面;
- 点击右侧参数按键,进入参数对话框,设置测试主要参数,
 具体参数依据测试对象而定;
- 参数设置完毕点击确定按键进入测试界面,点击采样按键开始采样;
- 此时进入采样调整状态,系统自动进入搜索状态,若搜索不成功,需要手动微调波形,可以通道左移,右移,放大,缩小等操作微调波形使仪器可以判读到首波;
- 调整完毕后点击存点保存按键保存测点;
- 测试完毕后,仪器自动提示是否测试完毕,点击确定自动保存 数据,点击取消可以继续进行测试,测试完毕后点击保存 按 键保存数据;
- 若需要继续测试新构件,可按照 2-6 步骤重复测试,若测试完 毕可以直接关闭仪器。

保存按键闪烁时需要手动点击保存按键保存数据,若不保存, 可能会造成数据丢失。

7.5.3 数据处理

测试完成后,将数据按照 4.9.2 节数据传输操作,将测试的数据 传输到 U 盘中,然后拷贝到电脑中,用本公司的《不密实区和空洞 检测数据处理软件》进行数据处理。数据处理软件具体操作方法详 见数据处理软件说明书。

8 超声法裂缝深度检测

本功能依据《超声法检测混凝土缺陷技术规程》(CECS21: 2000)对混凝土裂缝深度进行检测,并对检测数据进行计算处理与 判别。

8.1 测试主界面

测试主界面是测试程序的主要功能模块,大部分的操作都在此 界面内可以完成,如图 8.1-1 所示。整个界面都可以触摸操作,主 要分为两个区域:

左侧为波形和图形显示区域,用来显示波形图、采集参数、声参量、统计图形等信息;

右侧和下部为功能按键区域,主要有采集、参数设置等按键。

图 8.1-1 测缝主界面

8.1.1 测试信息

测试信息区域显示当前构件的一些参数信息,包括工程信息和 采样参数信息等。

8.1.2 测点列表

测点列表显示当前构件中当前裂缝的所有测点的声参量,按住 某一测点或者选择测点中某一项,点击修改按键,弹出修改间距界 面,输入测试间距,点击确定按键,软件自动计算新的声参量信 息。

8.1.3 裂缝列表

裂缝列表主要显示当前构建中跨缝和不跨缝裂缝列表,同时显

示跨缝裂缝计算出的裂缝缝深,如图 8.1-2 所示。

图 8.1-2 裂缝列表

8.1.4 回归测试曲线

裂缝列表下方显示测试曲线示意图和回归曲线示意图,红色的为回归曲线,蓝色的为当前裂缝曲线,示意图下方显示回归参数,如图 8.1-3 所示。

图 8.1-3 回归曲线示意图

- 8.1.5 功能按键区域
 - 采样按键,在设置完参数后,点击采样按键开始采样, 若未初始化参数,点击采样按键,会弹出参数设置界 面。
 - 停止按键,采样开始后,停止按键有效,点击停止采
 样,采样未开始时,停止按键无效。
 - 存点按键,点击存点按键,将当前波形数据保存到当前 测点中。
 - 保存按键,测试完毕后点击保存按键,可以将数据永久 保存到内部存储卡中。
 - 参数按键,新建测试下,点击参数按键弹出参数设置对 话框,可以设置各种参数;在打开文件状态下,可以查看 已测试文件的参数信息。

- **文件**按键,点击**文件**按键,弹出文件管理对话框。
- 搜索按键,采样时点击按键,有搜索按键功能,停止采
 样时,该按键无效。
- 放大按键,采样时点击按键可以增加该通道增益,放大 波形。
- 缩小按键,采样时点击按键可以减小该通道增益,缩小 波形。
- **左移**按键,采样时点击按键可以增大该剖面延时,左移 波形。
- 右移按键,采样时点击按键可以减小该剖面延时,右移 波形。
- 基线按键,采样时点击按键选中,再点击方向 ↑ ↓
 键可以调整基线。
- ▶j读线按键,又称阀值按键,采样时点击按键选中,再
 点击方向 ↑ ↓键可以调整判读线,判断算在仅在判
 读线之外起作用,判读线以内的波形不做自动判读。
- 方向键,在不同环境下,方向键有不同的作用,一般都
 是左右上下移动标志线的作用。
- **判读**按键,在停止采样时,回放波形,手动调整判读线 完毕后,点击该按键,可以手工修正判读结果。

- **复测**按键,选中已有测点,点击复测按键,可以对当前 测点进行复测。
- 修改按键,当选中测点时,点击修改按键,可以修改测点的测距。
- 删除按键,当选中测点列表时,点击删除按键,可以删除单个测点数据。
- **跨缝**按键,测试完一个裂缝数据后,直接点击跨缝按键 可以新建一个非跨缝裂缝。

8.2 参数设置

参数设置主要是对检测对象一些测试特征的设置和对仪器自身 参数的设置。可以通过测试主界面点击参数按键进入参数设置对 话框。参数设置对话框如图 8.2-1 所示。

工程设置			
工程名称 铭创科技	选择 新建	测试起点 100 mm	
裂缝名称 1	新建	测试距离 25 mm	
分析参数			
测试规范 全国	回归系数 自动		
	I		
仪器参数			
通道选择 通道2	采样周期 0.5us	采样长度 512	
发射电压 1000 V	判读算法 阀值判读		
恢复出厂设置 重置	季声时 显示设置	取消	确定

图 8.2-1 裂缝参数设置

8.3 数据保存

仪器保存数据分为自动保存和手动保存。

8.3.1 自动保存

自动保存仅在正常顺序测试条件下有效,在测试完成时,会触 发仪器自动保存机制,提示是否测试完毕,点击确定按键表示测试 完毕,弹出保存进度条,数据存储完毕后,进度条消失。

8.3.2 手动保存

手动保存在新测试项目或修改现有数据时触发手动保存机制, 需要手动保存是,主界面保存按键会开始闪烁,提示需要保存,点

击保存按键后,弹出保存进度条,保存完毕后保存进度条消失,保 存按键停止闪烁。

8.4 测试指南

8.4.1 仪器连接

首先将发射电缆和接受电缆分别和平面换能器连接,然后将平 面换能器连接至仪器的发射通道和通道1(通道2)接口中,并检 查是否连接牢固,连接完成后即可进行测试。

8.4.2 新建测试文件

- 打开仪器电源,等待进入测试主界面;
- 点击右侧参数按键,进入参数对话框,设置测试主要参数,
 具体参数依据测试对象而定;
- 参数设置完毕点击确定按键进入测试界面,点击采样按键开始采样;
- 此时进入采样调整状态,系统自动进入搜索状态,若搜索不成功,需要手动微调波形,可以通道左移,右移,放大,缩小等操作微调波形使仪器可以判读到首波;
- 调整完毕后点击存点保存按键保存测点;

- 测试完毕后,仪器自动提示是否测试完毕,点击确定自动保存 数据,点击取消可以继续进行测试,测试完毕后点击保存按 键保存数据;
- 若需要继续测试新构件,可按照 2-6 步骤重复测试,若测试完 毕可以直接关闭仪器。

保存按键闪烁时需要手动点击保存按键保存数据,若不保存, 可能会造成数据丢失。

8.4.3 数据处理

测试完成后,将数据按照 4.9.2 节数据传输操作,将测试的数据 传输到 U 盘中,然后拷贝到电脑中,用本公司的《超声法裂缝深度 检测数据处理软件》进行数据处理。数据处理软件具体操作方法详 见数据处理软件说明书。

9 附录

9.1 仪器部分数据计算公式

本仪器计算公式符合下列检测标准。计算公式来自各标准,如 有疑问请参考相关标准正式版。

9.1.1 《建筑基桩检测技术规范(JGJ 106-2003)》

10.4 检测数据的分析与判定

10.4.1 各测点的声时^{t_c}、声速 v、波幅 A_p 及主频 f 应根据现场检测数据,按下列各式计算,并绘绘制声速-深度(v-z)曲线和波幅-深度(A_p -z)曲线,需要时可绘制辅助的主频-深度(f-z)曲线:

$$t_{ci} = t_i - t_0 - t'$$
 (10.4.1-1)
 $v_i = \frac{l'}{t_{ci}}$ (10.4.1-2)

$$A_{pi} = 20 \lg \frac{a_i}{a_0}$$
(10.4.1-3)

$$f_i = \frac{1000}{T_i}$$
(10.4.1-4)

4

.

..

$$t_0$$
 ——仪器系统延迟时间(μ s);

$$a_i$$
 ——第 i 测点信号首波峰值(V);

 f_i ——第 i 测点信号主频值(kHz),也可由信号频谱的主 频求得;

10.4.2 声速临界值应按下列步骤计算:

1、将同一检测剖面各测点的声速值^{*V_i*}由大至小按顺序排列, 即

$$V_1 \ge V_2 \ge \cdots V_i \ge \cdots V_{n-k} \ge \cdots V_{n-1} \ge V_n$$
 (k=0, 1, 2, ...)

(10.4.2-1)

 \mathbf{T}

式中

 v_i ——按序排列后的第 i 个声速测量值;

n ——检测剖面测点数;

k ——从零开始逐一去掉式(10.4.2-1)^{*v_i*}序列尾部最小数 值的数据个数。

2 对从零开始逐一去掉式^{*V_i*}序列尾部最小数值后余下的数据 进行统计计算。当去掉最小数值的数据个数为 k 时,对包括^{*V_{n-k}*在 内的金下数据^{*V*1-^{*V_{n-k}*按下列公式进行统计计算:}}}

 $v_0 = v_m - \lambda \cdot s_x \tag{10.4.2-2}$

 $v_m = \frac{1}{n-k} \sum_{i=1}^{n-k} v_i$ (10.4.2-3)

$$s_{x} = \sqrt{\frac{1}{n-k-1} \sum_{i=1}^{n-k} (v_{i} - v_{m})^{2}}$$
(10.4.2-4)

式中

*v*₀ ——异常判断值;

 v_m —— (n-k) 个数据的平均值;

 s_x —— (n-k) 个数据的标准差;

 λ ——由表 10.4.2 查得的与(n-k)相对应的系数。

		表 10	.4.2	统计数	据个数	(n-k)) 与对	应的 λ	僮	
n-k	20	22	24	26	28	30	32	34	36	38
λ	1.64	1.69	1.73	1.77	1.80	1.83	1.86	1.89	1.91	1.94
n-k	40	42	44	46	48	50	52	54	56	58
λ	1.96	1.98	2.00	2.02	2.04	2.05	2.07	2.09	2.10	2.11
n-k	60	62	64	66	68	70	72	74	76	78
λ	2.13	2.14	2.15	2.17	2.18	2.19	2.20	2.21	2.22	2.23
n-k	80	82	84	86	88	90	92	94	96	98
λ	2.24	2.25	2.26	2.27	2.28	2.29	2.29	2.30	2.31	2.32
n-k	100	105	110	115	120	125	130	135	140	145
λ	2.33	2.34	2.36	2.38	2.39	2.41	2.42	2.43	2.45	2.46
n-k	150	160	170	180	190	200	220	240	260	280
2	2.47	2.50	2.52	2.54	2.56	2.58	2.61	2.64	2.67	2.69

3 将 $^{v_{n-k}}$ 与异常判断值 v_0 进行比较,当 $^{v_{n-k}} \leq v_0$ 时, $^{v_{n-k}}$ 及其以后的数据均为异常,去掉 $^{v_{n-k}}$ 及其以后的异常数据;再用数据 v_1 - $^{v_{n-k-1}}$ 并重复式(10.4.2-2)-(10.4.2-4)的计算步骤,直到 v_i 序列中余下的全部数据满足:

 $V_i > V_0$ (10.4.2-5)

此时, v_0 为声速的异常判断临界值 v_c 。

4 声速异常时的临界值判据为:

 $V_i \le V_c \tag{10.4.2-6}$

88 / 106

南京铭创测控科技有限公司 http://www.mcck.cn

当式(10.4.2-6)成立时,声速可判定为异常。

10.4.3 当检测剖面 n 个测点的声速值普遍偏低且离散性很小时, 宜采用声速低限值判据:

$$v_i \le v_L \tag{10.4.3}$$

式中

^v_i ——第 i 测点声速(km/s);

 v_L ——声速低限值(km/s),由预留同条件混凝土试件的 抗压强度与声速对比试验结果,结合本地区实际经验确定。

当式(10.4.3)成立时,可直接判定为声速低于低限值异常。

10.4.4 波幅异常时的临界值判据应按下列公式计算:

- $A_m = \frac{1}{n} \sum_{i=1}^n A_{pi}$ (10.4.4-1)
- $A_{pi} < A_m 6 \tag{10.4.4-2}$

式中

A_m ——波幅平均值(dB);

n ——检测剖面测点数。

当式(10.4.4-2)成立时,波幅可判定为异常。

10.4.5 当采用斜率法的 PSD 值作为辅助异常点判据时, PSD 值应按下列公式计算:

$$\mathsf{PSD=K}^{\Delta t} \tag{10.4.5-1}$$

 $K = \frac{t_{ci} - t_{ci-1}}{z_i - z_{i-1}}$ (10.4.5-2)

$$\Delta t = t_{ci} - t_{ci-1} \tag{10.4.5-3}$$

式中

^{Z_{i-1}} ——第 i-1 测点深度(m);

根据 PSD 值在某深度处的突变,结合波幅变化情况,进行异 常点判定。

9.5 数据处理与判断	
9.5.1 数据处理:	
1 桩身混凝土的声时(t_0)、声	ī速(t_n)分别按下列公式计算:
$t_{ci} = t_i - t_{00}$ (µs)	(9.5.1-1)
$v_i = l_i / t_{ci}$ (km/s)	(9.5.1-2)
式中	
^t ₀₀ ——声时初读数(μs),按	附录 B 测量;
^t i ——测点 i 的测读声时值(μs	5);
<i>l_i ——</i> 测点 i 处二根声测管内:	边缘之间的距离(mm)。
2 主频(^f i):数字式超声仪直	ī接读取;模拟式超声仪应根
据首波周期按(9.5.1-3)式计算。	
$f_i = 1000 / T_{bi}$ (kHz)	(9.5.1-3)
式中	

T_{bi} ——测点 i 的首波周期(μs)。

9.5.2 桩身混凝土缺陷可疑点判断方法:

1 概率法:将同一桩同一剖面的声速、波幅、主频按本规程第
 6.3.1和6.3.2条进行计算和异常值判别。当某一测点的一个或多个
 声学参数被判为异常值时,即为存在缺陷的可疑点;

2 斜率法:用声时(^{*t_c*)--深度(h)曲线相邻测点的 K 和相 邻两点声时差值 Δ*t* 的乘积 Z 绘制 Z-h 曲线,根据 Z-h 曲线的突变位 置,并结合波幅值的变化情况可判定存在缺陷的可疑点或可疑区域 的边界。}

$$K = (t_i - t_{i-1})/(d_i - d_{i-1})$$
(9.5.2-1)

$$Z = K \times \Delta t = (t_i - t_{i-1})^2 / (d_i - d_{i-1})$$
(9.5.2-2)

式中

 $t_i - t_{i-1}$ 、 $d_i - d_{i-1}$ ——分别代表相邻两测点的声时差和深度差。

9.5.3 结合判断方法绘制相应声学参数-深度曲线。

9.5.4 根据可疑测点的分布及其数值的大小综合分析,判断缺 陷的位置和范围。

9.5.5 当需用声速评价一个桩的混凝土质量匀质性时,可分别 按(9.5.5)各式计算测点混凝土声速值^{*V_i*}和声速的平均值^{*m_v*}和标 准差^{*S_v*及离差系数^{*C_v*}。根据声速的离差系数,可评价灌注桩混 凝土匀质性的优劣。}

按下式分别计算:

$$v_i = l_i / t_{ci}$$
 (9.5.5-1)

$$m_{v} = \frac{1}{n} \sum_{i=1}^{n} v_{i}$$
(9.5.5-2)

$$s_{v} = \sqrt{\left(\sum_{i=1}^{n} v_{i}^{2} - n \cdot m^{2}\right)} / (n-1)$$
(9.5.5-3)

$$c_v = s_v / m_v$$
 (9.5.5-4)

式中

9.1.3 《公路工程基桩动测技术规范(JTG/T F81-01-2004)》

6.4 检测数据分析与判定

6.4.1 声时的修正值应按下式计算:

$$t' = \frac{D - d}{v_t} + \frac{d - d'}{v_w}$$
(6.4.1)

式中

D ——检测管外径(mm);

$$d^{'}$$
 ——换能器外径(mm);

$$v_t$$
 ——声测管壁厚度方向声速值(km/s);

 v_w ——水的声速值(km/s)。

6.4.2 声时、声速和声速平均值应按下列公式计算,并绘制声 速-深度曲线、波幅-深度曲线。

$$t = t_i - t_0 - t'$$
(6.4.2-1)
$$v_i = \frac{l}{t_c}$$
(6.4.2-2)

$$v_m = \sum_{i=1}^n \frac{v_i}{n}$$
(6.4.2-3)

式中

t ——声波在混凝土中的传播时间(简称声时, μ s);

- ^{*v_i* ——第 i 个测点声速值(km/s);}
- *l* ——两根检测管外壁间的距离(mm);
- v_m ——声速平均值(km/s);
- *n* ——测点数。
- 6.4.3 单孔折射法的声时、声速值应按下列公式计算:

$$\Delta t = t_2 - t_1 \tag{6.4.3-1}$$

 $v_i = h / \Delta t \tag{6.4.3-2}$

式中

- v_i ——第^{*i*} 测点的声速值(km/s);
- Δt ——两个接受换能器间的声时差 (μ s);
- t_1 ——近道接收换能器声时(μ s);

6.4.4 桩身完整性应根据下列方法综合判定:

1 声速判据

采用正常混凝土声速平均值与 2 倍声速标准差之差作为判定桩 身有无缺陷的临界值。当实测声速低于声速临界值时,应将其作为 可疑缺陷区。

$$v_D = v_m - 2\sigma_v \tag{6.4.4-1}$$

$$v_{m} = \sum_{i=1}^{n} v_{i} / n$$
(6.4.4-2)
$$\sigma_{v} = \sqrt{\sum_{i=1}^{n} (v_{i} - v_{m})^{2} / (n-1)}$$
(6.4.4-3)

式中

- ^{*v_m* —— 正常混凝土声速平均值(km/s);}
- σ_v —— 正常混凝土声速标准差;
- ^vi 第 i 个测点声速值(km/s);
- *n* —— 测点数。

2 波幅判据

用波幅平均值减 6dB 作为波幅临界值,当实测波幅低于 波幅临界值时,应将其作为可疑缺陷区。

$$A_D = A_m - 6$$

(6.4.4-4)

$$A_m = \sum_{i=1}^n A_i / n$$

(6.4.4-5)

式中

A_m —— 波幅平均值(dB);

A_i —— 第 i 个测点相对波幅值(dB)。

3 PSD 判断

应按下列公式计算 PSD 值,并绘制 PSD-深度曲线,当 PSD 值在某测点附近变化明显时,应将其作为可疑缺陷区。

$$PSD = \frac{(t_i - t_{i-1})^2}{z_i - z_{i-1}}$$
(6.4.4-6)

式中

*t*_{*i*-1} — 第 i-1 个测点声时值(μs);

^{*z_i* —— 第 i 个测点深度(m);}

^{Z_{i-1}} —— 第 i-1 个测点深度(m)。

9.2 触摸屏U盘校正软件获取

获取 U 盘触摸屏校正程序有两种途径。

9.2.1 网站直接下载

- 登录本公司官方网站: http://www.mcck.cn;
- 进入网站 产品&下载 的 下载 栏目,查找触摸屏校正程序项
 目,点击进入;
- 下载该程序到本地计算机,解压缩并仔细阅读 说明.txt 文件;
- 按照说明中的步骤将程序拷贝至 U 盘。

9.2.2 数据处理软件接口更新

- 进入超声数据处理软件;
- 将 U 盘插入本地计算机 MSB 接口中;
- 点击工具栏中的 升级维护-下载触摸屏校正程序 选项;
- 等待程序自动下载完成。

9.3 U 盘升级文件获取

获取 U 盘升级文件有两种途径。

9.3.1 网站直接下载

- 登录本公司官方网站: http://www.mcck.cn;
- 进入网站 产品&下载 的 下载 栏目,查找与仪器对应的升级 文件项目,点击进入;
- 下载该程序到本地计算机,解压缩并仔细阅读 说明.txt 文件;
- 按照说明中的步骤将程序拷贝至 U 盘。

9.3.2 数据处理软件接口更新

- 进入超声数据处理软件;
- 将 U 盘插入本地计算机MSB 接口中;
- 点击工具栏中的 升级维护-更新仪器软件 选项;
- 弹出仪器选择对话框,选择要升级的仪器编号,点击确定;
- 等待程序自动下载完成。