1 目录

本	∶手册□	中的约定内容	1
2	简介.		2
3	安装与	与卸载	2
	3.1	最低配置	2
	3.2	软件的安装	3
	3.3	软件卸载	5
4	软件证	运行	7
5	超声道	透射法基桩检测	9
	5.1	打开文件	9
	5.2	文件保存	10
	5.3	文件另存	10
	5.4	原始数据	11
	5.5	工程信息	12
	5.6	基桩信息	12
		5.6.1 特殊说明	13
	5.7	显示设置	14
		5.7.1 工具栏	15

	5.7.2	状态栏1	15
	5.7.3	单道波形1	16
	5.7.4	波形参数1	17
	5.7.5	数据列表1	8
	5.7.6	剖面参数1	.8
	5.7.7	曲线视图1	9
5.8	数据处	处理2	21
	5.8.1	自动判读2	21
	5.8.2	手动判读2	23
	5.8.3	剖面管理2	23
	5.8.4	声参量处理2	25
	5.8.5	重新计算2	25
	5.8.6	异常点处理2	25
	5.8.7	管斜处理2	26
5.9	报告生	上成与打印2 2	26
	5.9.1	使用内置系统生成2	26
	5.9.2	导出 BMP 位图文件2	29
	5.9.3	生成汇总表	30
5.10)软件	升级	35
	5.10.1	1 升级处理软件	35

		5.10.2	升级机内软件	36
6	附录			38
	6.1	附录 A	相关数据标准计算公式	38

本手册中的约定内容

- 带灰色背景的文字表示屏幕上的一个按钮或菜单或键盘上的一 个按键,如 取消,如果是键盘上的按键,在按钮后会加上一 个"键"字。
- 白色背景带黑色方框的文字表示屏幕窗口中控件(如选择框、 输入框等)名称。如 ^{跨距 420} (m) 跨距控件表示成 跨距。
- 3. 视图区域名称用粗体字表示,如 单道波形区。
- 本手册中所用到的导出图片功能,导出的均为位图格式,后缀 为*. bmp。
- 5. 本手册中的截图均在 Windows 7 平台下截取,在其他兼容平台 下的主题可能有所差异。
- 本手册在 2.8 版本处理软件基础上说明功能和截图,后续版本 新增功能会持续补充。

2 简介

MC 系列超声数据处理系统是由铭创科技自主研发的超声数据 处理软件,本软件界面友好,操作方便,功能强大,用户体验极佳。 经过多年客户检验,不断地改进和增加实用功能,基本做到用户需 求全部覆盖,集数据处理,报告自动化生成于一体,可极大的降低 客户的工作量,达到快速处理、生成检测报告的效果。

3 安装与卸载

本软件均以微软公司开发的的 Windows 系列操作系统做为运行环境。兼容 Windows XP, Windows Vista, Windows 7, Windows 10 等 32 位和 64 位版本操作系统。

3.1 最低配置

软件运行的最低配置有下:

硬件名称	硬件型号
中央处理器(CPU)	1.5GHz 以上
内存	256MB 以上
硬盘	40GB 以上

2/51

网络

升级和帮助功能需要联网

3.2 软件的安装

本软件采用 C++ 9.0 开发,需要安装 Microsoft Visual C++ 2008 Redistributable SP1 Package (x86)组件,如果已经安装,不需要重复 安装。软件下载地址如下:

http://www.microsoft.com/zh-cn/download/details.aspx?i

<u>d=3387</u>

处理软件下载地址如下:

http://www.mcck.cn/html/downloads/soft/2011/1021/299.h

tml

下载完成之后,解压安装包,双击 Setup.exe 文件进行软件安装, 如图 2.1.1 所示。

图 2.1.1 软件安装过程

最后点击完成安装按钮,安装完毕,可以在桌面或者开始菜单 找到已经安装的软件,双击即可运行软件。

3.3 软件卸载

软件卸载有两种方式,第一种直接在控制面板中选择, 铭创科 技超声处理软件这一选项, 然后点击卸载按钮,即可卸载软件,如 图 4.8.1-1 控制面板卸载所示。第二种在开始菜单中选择 铭创超声 数据处理软件选项,在子菜单中选择 Uninstall 超声数据处理软件选项,即可卸载软件,如图 4.8.1-2 从开始菜单卸载所示。

组织 ▼ 卸载/更改	
名称 ^	发布者
▶ 銘创科技超声数据处理软件	北京铭创科技有限公司

图 4.8.1-1 控制面板卸载

图 4.8.1-2 从开始菜单卸载

点击卸载按钮之后,弹出如图 4.8.1-3 卸载超声数据处理软件 所示对话框,点击下一步,等待软件完成,最后点击完成按钮即可 完成卸载。

图 4.8.1-3 卸载超声数据处理软件

4 软件运行

点击桌面快捷方式或开始菜单中的快捷方式,即可运行超声数 据处理系统(以下统称软件),如下图所示,软件共有六部分组成, 即超声透射法基桩检测、超声回弹综合法测强、空洞与不密实区检 测、超声法裂缝深度检测、超声一发双收测孔、金属超声探伤。点 击任何一个部分,可以打开相应的数据处理软件,如下图所示。

U8 超声透射法基桩检测	₽ 超声回弹综合法测强
Qx 空洞与不密实区检测	上 超声法裂缝深度检测
℃ 超声一发双收测孔	▶ 金属超声探伤
2件版本 ————————————————————————————————————	

图 4.8.1-1 软件运行界面

5 超声透射法基桩检测

5.1 打开文件

选择文件打开菜单后, 弹出如图 4.8.1-1 打开文件所示的打开 文件对话框,从对话框中选取要打开的文件,然后点击打开按钮, 将文件打开。

查找范围 (I):	🔒 LZXK15-059		- G	🧊 📂 🛄 👻	
(Ca	名称	*		修改日期	
Recent	10#-3.U8			2011/10/28 星期	細五
necom	随 0#-4.U8			2011/10/28 星期	晒… 田根
	🎦 1#-3.U8			2012/4/16 星期	- 1
dim.	1#-4.U8			2012/4/17 星期	= 1
DECHN	2#-3.U8			2012/9/27 星期	四 1
	🥦 2#-4.U8			2011/10/28 星期	明五
彩的文档	🥦 3#-3.U8			2011/10/28 星期	洒
JOH JAN IN	3#-4.U8			2011/10/28 星期	西…
计算机					
	•				,
	文件名(8):	*. UB		- II;	开(0)
	文件类型(T):	铭创测桩文件(*.08)		- 4	1消

图 4.8.1-1 打开文件

打开新文件之前,如果已经打开的文件被修改,则提示是否保存,如图 4.8.1-2 保存文件提示所示,此时选择确定,保存修改结 果并打开新文件,选择否,则不进行保存并打开新文件。

图 4.8.1-2 保存文件提示

5.2 文件保存

打开的文件如果没有进行修改,保存按钮为置灰状态,当打开 的文件经过修改,保存按钮会高亮显示,点击保存按钮即可保存文 件。

5.3 文件另存

将当前打开文件另存为一个新的文件。选择文件另存为菜单后, 弹出如图 4.8.1-1 另存为所示的保存为对话框,从保存在对话框中 选取要保存文件所在的文件夹,在文件名框中输入文件名后按保存 按钮即可将文件保存,按取消按钮则不另存。

保存在(I)	LZXK15-05	9	• G	1 🖻 🛄	-	
C.	名称	*		修改日期		
29 Barrier	D#-3.U8			2011/10/	28 星期五	
Recent	🥦 0#-4.U8			2011/10/	28 星期五	
1	1#-3.U8			2012/4/1	6 星期一 1	
	🥦 1#-4.U8			2012/9/2	7 星期四 1	
美国	🥦 2#-3.U8			2012/9/2	7 星期四 1	
R	🥦 2#-4.U8			2011/10/	28 星期五	
ER Charles	🥦 3#-3.U8			2011/10/	28 星期五	
KH3,X1=	🥦 3#-4.U8			2011/10/	28 星期五	
计管机						
F1						
	•			r -		۴
	文件名(M):	1#-4. U8		•	保存(S)	-
	保存类型(T):	所有文件 (*,*)		-	取消	-

图 4.8.1-1 另存为

保存文件之前,若存在同名文件,则弹出如图 4.8.1-2 另存覆 盖所示的对话框,询问是否覆盖该文件,若选择是,则覆盖保存, 被覆盖的文件将丢失并且不能恢复;若选择否,则不保存并返回图 4.8.1-1 另存为所示的对话框,重新输入文件名。

图 4.8.1-2 另存覆盖

5.4 原始数据

原始数据是指设备原始的未经过修改的测试数据,选择文件原 始数据菜单,可以浏览原始测试数据,原始数据只能浏览不能修改。

5.5 工程信息

在已打开文件状态,选择参数设置工程文件选项后,弹出图 4.8.1-1 工程信息设置所示对话框,用户可以设置工程名称、施工单 位、检测单位、资质证号、报告编号等相关信息,设置完成后,按 确定按钮,则保存工程信息;按取消按钮,则所输信息无效。

19.515 ())()() ()()			
.在名称: 少与四句7			
程地址:	检测单位:		
计单位:	资质证号:		
西工单位:	委托日期:	2016/11/10	•
设单位:	报告编号:		
理单位:	合 同 号:		
智单位:	项目名称:		
经托单位:			

图 4.8.1-1 工程信息设置

若当前文件中的工程信息是经常使用的信息,可以使用图 5.1.1 左下角读取上一次配置功能,如图 4.8.1-2 工程信息参数读取所示。 点击保存配置按钮,可以将当前的信息保存到配置文件,供下一次 读取使用。

5.6 基桩信息

在已打开文件状态,选择参数设置工程信息选项后,弹出图 4.8.1-1 基桩信息设置所示对话框,用户可以设置基桩信息、仪器 信息、技术规范、管位图信息等相关信息,设置完成后,按确定按 钮,则保存基桩信息;按取消按钮,则所输信息无效。

住信息					
# 桩信息					仪器信息
基桩名称:	4-1	截面形状:	圆形	\$	仪器型号: 测试人员:
浇注日期:	2016/8/26 ~	检测桩长:	34	(m)	
则试日期:	2016/10/19 ~	设计桩径:	1000.00	(mm)	(公器编号: 上岗证号:
完整性等级:	- 殿 :	□自定		(mm)	检定证号:
鱼度等级: 🤇	C35 🗘	初则深度:	0.00	(m)	
PSD 单位:	µs^2/cm 🗘	探头高差:	0.00	(m)	
基桩类型: [摩擦桩	🗌 波幅修正:		(dB)	前进 主条 25 度
设计桩顶标着	g: 0	(m) 设计桩长:	33	(m)	
设计桩底标篇	5: 0	(m) 施工桩长:	33.00	(m)	
现脏顶标着	E: 0	(m) 自动计算	r I		
现脏底标着	<u>5</u> : 0	(m) 读取标着	。 【保7	标高	
自定义基柢	主信息 桩位:		号:		管位置示意图 Y
新规范) JGJ 106-20	03 O CECS	21:2000 💿 J	TG/T F81-0	1-2004	保存位置 读取保存位置 管位图方向设置
) TB 10218-2) JGJ 106-20	008 () SJG (14	19-2007 OE	BJ 15-60-2	008	
E信息:					
遠距上—次値	i 保存	西澤			福定 取道

图 4.8.1-1 基桩信息设置

- 5.6.1 特殊说明
 - 完整性等级 根据现有标准,如 JGJ 106-2014,基桩的完整性等级可以 进行自动计算,软件会根据处理后的数据自动计算出基桩

的完整性等级,若需要手动调整,可以点击后面的自定复 选框,进行手动设定。

- 标高、桩长自动计算 设置完成基桩标高后,点击自动计算按钮,软件会自动计 算出检测桩长和设计桩长等参数,方面用户操作。
- ➢ 管位图快速调整

系统默认给出了几个标准的管位图样式,可以在快速设置 下拉框中进行选择,达到快速设置的目的;若同一批基桩 管位图基本相同,可以将第一次设置的管位图进行保存, 下次处理相同的基桩时,可以点击读取保存位置按钮,进 行快速读取。

5.7 显示设置

如图 4.8.1-1 软件区域说明所示

图 4.8.1-1 软件区域说明

5.7.1 工具栏

工具栏提供一些快捷常用的功能,比如打开文件、保存、打印、 视图切换等功能,在当前状态下,若功能可用,工具栏图标高亮显 示,若功能不可用,工具栏图标置灰显示。鼠标在图标上悬停 2 秒, 会弹出提示信息。

5.7.2 状态栏

状态栏显示当前操作的提示信息,有助于帮助进行下一步操作。

5.7.3 单道波形

单道波形视图显示的是当前所选测点的波形图,如图 4.8.3-1 单道波形视图所示。

图 4.8.3-1 单道波形视图

上图中蓝色线条为采集的波形的时域显示视图,横竖两条红色 线段是波形的判读线;竖线表示波形的首波起点,横线表示首波波 峰的幅值最大点;横向轴表示时间轴,刻度表示当前的波形走时, 单位为微秒(µs);图的左上角为判读信息,有自动或手动两种显示 方式,表示当前波形首波的判读方式是仪器自动判读或人工指定首 波起点。

在单道波形视图移动鼠标,判读线会跟随鼠标移动,同时在波 形参数区(见图 4.8.4-1 波形参数)会显示当前鼠标位置的波形参 数。若在波形参数区选择了右键判读功能,并且点击了鼠标右键, 软件会以鼠标当前位置为波形首波位置重新判读波形的首波。

16 / 51

5.7.4 波形参数

波形参数区显示当前测点的波形的一些参数信息,并且可以对 波形做一些调整操作,如图 4.8.4-1 波形参数所示。

声时	175.50	声速	4.558	波幅	107.65	PSD	13.69	増益	21.37
深度	14			右键判词	t 🔳	反相	匚填	充	🗌 频谱
回波明	18缩放 []		■波	移移动)—		- (1	存移动

图 4.8.4-1 波形参数

最上面是波形的声参量信息,这里不再赘述,鼠标悬停在在相 关文本框上可以显示相应声参量的单位信息。

右键判读功能,选中在单道波形区可以直接右键对波形进行判 读。

反相功能,选中波形正相和负相颠倒显示。

填充功能,选中对波形负相进行填充。

频谱功能,选中单道波形区显示当前波形的的频谱,波形区会 标识波形的主频信息,如图 4.8.4-2 波形频谱所示。

图 4.8.4-2 波形频谱

波形缩放,选中并滑动后方的滑杆,可以放大或者缩小当前波 形。

波形移动,仪器在存储波形时,为了防止漏判或者误判,会自 动在波形前后多存储一段数据,选中波形移动并滑动后方滑杆,可 以前后移动波形,帮助判读,如果需要多存储的那两段波形,可以 点击保存移动按钮,系统会自动保存移动后的波形。

5.7.5 数据列表

数据列表视图显示当前剖面的声参量信息,默认显示深度、声时、声速、波幅、PSD 信息。拖动滚动条可以查看未显示的信息。

5.7.6 剖面参数

剖面参数区域显示当前剖面的一些参数信息,分为剖面信息、 声参量信息、管位图和采样参数四大块。 剖面信息显示当前剖面的相关参数,点击剖面后面的下拉菜单,可以切换当前剖面。点击编号规则后的下拉菜单可以更改剖面的编号规则,有3种编号规则可以显示。

管位图信息,可以通过基桩信息里可以修改声测管位置。

声参量信息,显示的是整个剖面的统计信息,包括各声参量的 平均值、标准差、临界值、离差系数等;也可以选择自定义功能, 指定各声参量的临界值。

采样参数,显示设备测试数据时的采样信息,在处理软件中只 作为判读的辅助信息,不能进行修改。

5.7.7 曲线视图

曲线视图共有曲线图、多剖面曲线图、波列图、波列影像图四 种图形显示。曲线视图切换可以通到显示设置中选择菜单切换,也 可以通到工具栏点击快捷图标进行切换。

曲线图,可以显示深度-声速(H-V)、深度-波幅(H-A)、深 度-PSD(H-PSD)、深度-频率(H-F)四种曲线,默认显示前三种。 曲线比例可以在曲线图上点击右键,在弹出菜单中选择曲线比例设 置,在弹出对话框中可以设置曲线显示比例,如下图所示。

H-V 曲线		2	28	- 25	'n.	-5	1	5	8	1	日白史ツ	0			km/s ~	6			km	ls.
	U.S.	2	22	1	Ŷ	15)/ t	15	2	1		-			1011/0]	
H-A 曲线	Ŭ.	d.	25	4		5	2	5	2	i.		in.	,		dB au	6			de	
□-A 曲线	1.1	2	2	a.	Ų	15	12	5	2	r.		0		- 3		0			ub	
	1	a.	્ય	3	ė	ĸ	S.	r.	a.	r.		1		2		,a	÷	2	e.	1
+SD 曲线	1.	1	31	- 30	Ŷ	16	24	10	Эř.	1		i.	17	Э.	, Ų	<u>.</u>		08	С.	1
И-УЩ	ŧ⊌ŧ	Ħ	Ē]н-/	١	ŧĘ	相	Г	P	sD右	(D)									

图 4.8.7-1 曲线参数设置

多剖面曲线图,显示测试的所有剖面曲线图,方便对比同一深 度的测试情况。

波列图,显示当前单剖面波列图,有多种显示选项可以设置图 形的显示,如下图所示。

图 4.8.7-2 波列图设置

波列比例设置,可以设置波列的行距和行高,可以根据自
 己习惯进行随意设置。

- 2) 多模式显示,可以设置波列全波列显示、正相显示、线段 显示和频谱显示。
- 3) 延时对其,软件默认延时对其方式可以保证大部分的波形 在可见范围,也可以选择最小延时对齐方式显示波列,也 可以手动设置波列在时域显示的范围。

波列影像图,显示当前剖面的波列灰度影像图。

5.8 数据处理

本软件提供了丰富灵活的数据处理方法,可以帮助用户更好地 处理测试数据。

5.8.1 自动判读

若数据出现较多判读不准确的现象或者需要重新对数据进行判读,可以使用自动判读功能。可以在菜单计算处理中选择自动判读 或者再工具栏选择自动判读图标,会弹出如下对话框。

读参数设置		23
算法选择 ③ 阀值算法	 送代算法 	
判读阀值调整	16 恢复默认	
剖面选择		
◎ 当前剖面	◎ 所有剖面	
	确定	取消

图 5.1-1 判读参数设置

迭代算法

本软件提供的迭代首波判读算法是铭创科技与清华大学合作开 发的首波判读算法,该算法可以覆盖 99%以上的波形,判读准确率 几乎可以达到 100%,推荐使用此算法对首波进行自动判读。

使用该算法只需点击该算法名称,然后选择判读范围是当前剖 面还是所有剖面,然后点击确定,系统会对所选测点进行重新判读 和计算。

阀值算法

阀值算法是传统的首波判读算法,可以自定义阀值的大小,当 所测波形数据幅值变化较大时,可以设置判读阀值稍大一些,然后 再对波形进行判读;若所测波形整体幅值偏小,可以将阀值设置较 22/51 小一些,再进行判读。在单道波形视图中,会有横向两道虚线,是 当前判读阀值线,只有在阀值线以外的波形才进行判读。

5.8.2 手动判读

若出现个别数据波形异常,自动判读算法无法准确判读首波, 可以使用手动判读功能。推荐方法是先选中波形参数区中的右键判 读选项,然后在单道波形视图中移动鼠标,移动到首波需要判读的 位置,然后单击右键进行判读。判读成功相关数据会自动计算,视 图中左上角会显示成"人工"。此时点击键盘上上下方向键,可以 移动到上下两个相邻点。

5.8.3 剖面管理

软件提供剖面的合并、删除、移动和重命名的功能,在当前的 打开数据的状态下,点击菜单编辑-剖面管理选项,弹出如下图的剖 面管理对话框。

间围基桩 副面名称		添加剖面 添加剖面所在数据文件	的路径
L. 1-2 2. 1-3	刪除		选择文件
J. 2-3	上移		加剖面名称
	下移	<<添加到左侧	
重命名			
			4

图 5.3-1 剖面管理

剖面添加,在右侧添加剖面区域点击选择文件路径,选择要添加的剖面所在的数据文件路径,选好之后会在列表里显示选择的数据文件中有几个剖面,然后选中需要添加的剖面,点击添加到左侧按钮,剖面就可以添加到当前的数据文件中了。

剖面删除,在左侧选择需要删除的剖面名称,点击删除按钮, 可以删除选中的剖面,只支持单选。

剖面移动,在左侧选择需要移动的剖面名称,点击上移或者下 移按钮,可以移动当前选中的剖面,剖面名称前面的数字为显示的 序号,可以任意指定两个剖面相邻。

剖面重命名,在左侧选择需要重命名的剖面,点击重命名按钮, 输入剖面名称,点击确定即可重命名剖面,重命名后剖面顺序不变。

5.8.4 声参量处理

软件可以修改单道波形的判读数据,有两种方法,可以在波形 参数区中修改当前选中测点的声时、声速、波幅的数值;也可以在 数据列表区选择相应的测点,然后在需要修改的参数上双击鼠标左 键,列表程可编辑状态,修改完数值后,敲击键盘回车键,即可完 成修改。

软件也可以批量移动,添加,删除数据。在数据列表视图按住 鼠标左键,拖动鼠标,被选择的测点程蓝色底纹即选中状态,也可 以使用 Ctrl 键间隔多选或者 Shift 连续多选,在选择的数据上方点击 右键,出现操作菜单,可以复制,删除,粘贴等操作,这些操作也 可以通过菜单栏编辑菜单中相关选项进行操作。

5.8.5 重新计算

在菜单栏选择计算处理-重新计算选项可以对所有数据重新计算,若数据发生变化,则相应的统计值也会重新计算。

5.8.6 异常点处理

软件有自动修正异常点功能,帮助用户快速完成异常值得判读 和声参量修正。该功能仅对个别异常测点有效,在曲线图视图中, 在某一点上点击右键,在弹出菜单中选择设置起点,在用同样的方 法设置完终点,则被选择区域程灰色底纹状态,然后点击菜单中修 正异常值选项,软件会对选择区域进行异常值修正。

若没有选择任何区域,则对当前整个剖面进行异常点修正。

5.8.7 管斜处理

由于施工不规范或者其他因素造成的声测管倾斜,在进行声波 透射法测试时,会对声参量数据造成巨大的影响,直接影响完整性 的判断,由于管斜对数据影响的范围较大,声测点较多,手工进行 更正费时费力。由于管斜数据有一定的规律性,所以本软件根据线 性相关特征对管斜数据进行修正。

可以在管斜范围的顶部深度和底部深度之间设置起点和终点, 然后选择菜单中的自动纠偏,系统会自动计算管斜角度,对所测数 据进行修正,也可以对整个剖面进行管斜修正,软件只会修正发生 管斜的部分。

5.9 报告生成与打印

本软件提供多种报告生成模式,可以满足大部分用户的需求。 报告生成操作简单,使用灵活,可以生成多种报告样式。

5.9.1 使用内置系统生成

本软件内置报告系统,在打开文件的状态下,选择菜单栏文件-打印设置选项或点击工具栏打印设置图标,弹出如下对话框,先进 行打印设置。

页面内容选择 剖面选择:	印内谷设置	页眉页脚 表	头设置			
1-2 1-3		选	每页打	「印剖面数:	3 🔻	
2-3	 ∕€	动排序	正文字	学体: 宋体	\$	•
	排	 多 下移				
打印纸张设置 纸型:	A4	•	宽度:	210	(mm)	
方向:	◎ 纵向	◎ 横向	高度:	297	(mm)	
页边距(单位:	mm)					
上: 20 🔮	下:	15	左: 20	×	右: 15 🚔	
装订线: 5		装订线位置:	左侧	•		

图 6.1-1 打印设置

设置完成之后,直接选择打印预览,可以直观的看见将要打印 的报告内容,预览完成后直接点击左上方打印按钮,即可连接打印 机打印报告。

打印页面设置

页面内容选择,可以选择需要打印的剖面和每页纸需要打印的 剖面数及打印字体。 打印纸张设置,软件默认选择 A4 纸张,也可以选择 A5 和自定 义纸张类型。

页边距,可以设置打印的纸面的页边距,同时也可以设置装订 线距离和装订线位置。

打印内容设置

打印内容设置是设置的关键内容,报告生成内容主要在这里设置,如下图所示。

「印页面设置 打印	巾内容设置	页眉页脚	表头设置				
打印内容选择:		波列	图设置				
曲线	□全选	波	列图高度	10		🔲 打印高	程
波列影像图 波列	~	iet.	如图问幅	4		📝 打印判	读线
	上移	, ADC .	r Jisti Giriti				
	下移	波	列曲线宽度	3			
吉利管示音图		抽	点设置 💈	不抽样	•		
曲线诜顶							
◎ 深度 - 波速	(文) (平)	度一 波加富	V \$TED:	記止高程			
100,000 ADC/200	(<u> </u>	SC 404714	1000 100 100				
🗌 深度 - 频率	☑ 深朋	實 — PSD	曲线粗纸	8: 1		v	
🔲 曲线黑白							
数据表格设置							
🛛 波速 🛛	声时	🔽 PSD值			文字	对齐:	
🛛 波幅 📃	频率	☑ 管距	副缺陷相	际记	居中	ı 👻	
行间距:2	×	(mm)	表格行為	듦: 3		(nm)	

图 6.1.2-1 打印内容设置

该选项卡可以自由设置需要打印的内容,包括曲线图,波列图、 数据表格等一些视图的所有参数设置。

页眉页脚

该选项卡可以直接设置页面的版面信息,包括页眉、页脚、页 码,该设置可以重复用在所有页面。

表头设置

该选项卡主要方便用户自定义生成报告的表头信息,包括了数 据中大部分的参数信息,可以自由灵活调用需要显示的参数信息。

另外还可以自定义显示的表头信息,只需在其他表头信息中输 入表头标题和表头内容。如下图所示。

其他表头信息 表头标题	表头内容
1	
2	
3	
4][
5	
6	

图 6.1.4-1 自定义表格内容

5.9.2 导出 BMP 位图文件

生成的报告可以直接导出成 BMP 格式的位图文件,生成之前也 需要进行打印设置,设置完成之后可以选择文件-导出到 BMP 选项, 弹出如下对话框选择导出的路径。

4	📳 计算机	*
	▶ 🏭 本地磁盘 (C:)	
	▶ 👝 本地磁盘 (D:)	E
	▷ 💼 本地磁盘 (E:)	
	▷ 🚑 DVD R₩ 驱动器 (F:)	
	▶ 師 铭创科技 (G:)	
	▷ 🙀 CD 驱动器 (J:) Vtility_HD-CXTV2	
	▶ 🛐 CD 驱动器 (K:) Vtility_HD-PXTV2	
	> a evan (L:)	
		*
4	• III III III III III III III III III I	

图 6.2-1 导出路径选择

选择好路径之后点击确定按钮,软件会自动生成跟数据同名的 文件夹,文件夹中是所有导出的 BMP 文件。

5.9.3 生成汇总表

本软件提供多种汇总表生成功能,我司可以提供特殊汇总表格 式定制服务,如有需要请联系我司售后人员。

软件默认提供汇总表格式如下图所示。

序	桩., 号., (#).,	柱 径 (nm):	设计 桩长 (m):	剖 面	平均 声速 (km/s)	声速 异常 判定值 (km/s))	声速 标准 差 (km/s)	高散 系数 (%),	桩身主要缺陷 描述。	完整性 等级
				A-B.,	3. 148.	2. 947.	0. 087.	2. 8.1		
				A-C.,	<mark>3. 6</mark> 24.	3. 029.	0. 259.	7. 1.,		
				B-C.,	3. 785.	3. 360.	0. 185.	4. 9.,		
1.,	G10.1	0. 00.	24.00	1低-3 恒。	<mark>3. 4</mark> 56.	2. 982.	0. 205.	5. 9.		I 类桩
				1 高- 3 低.,	3. 713.	3. 295.	0. 186.	5. 0.,		
				2高-3 低.1	3. 716.	3. 329.	0. 228.	6. 1.,		
				1-2.,	3. 878.	3. 824.	0. 198.	5. 1.,		
2.1	G16.1	0. 00.	24.00	1-3.,	<mark>3. 4</mark> 94.	3. 220.	<mark>0. 11</mark> 8.	3. 4.1	- A	I 类桩
				2-3.1	3. 086.	2. 770.	0. 137.	4. 4.1		
				1-2.,	3. 389.	3. 080.	0. 143.	4.2.		
3.1	G16_1.,	0. 00.	24. 00	1-3.,	2. 581.	0.000.	1. 395.	54. 0.	in .	I 类相
				2-3.,	<mark>3. 3</mark> 94.	2. 904.	0. 204.	6. 0.,		s
4.1	G2.1	0.00.	45.00	1-2.1	3. 354.	3. 070.	0. 136.	4.1.	а	I 类相
5.,	G2_1.,	0. 00.	24. 00	1-2.1	3. 374.	3. 062.	0. 139.	4.1.1		I 类相
6.1	G47.1	0. 00.	24. 00	1-2.,	3. 749.	1. 635.	0.870.	23, 2,	a.	I 类相
7.1	G47.,	0. 00.	24. 00	1-2.,	<mark>3. 6</mark> 77.	2. 928.	0. 308.	8.4.1	. A	I 类桩
				1-2.,	3. 542.	3, 174.	0.150.	4. 2.1		
8.1	G59.,	0.00.	24.00	1-3.,	<mark>3. 6</mark> 07.	3. 157.	0, 189.	5. 2.,		I 类桩
				2-3.,	2. 783.	2. 463.	0. 142.	5. 1.,		
æ	-1	a.			1.10		а	21/		

声波透射法桩身质量完整性检测结果表↔

图 6.3-1 完整性检测结果表 1

31/51

林县	桩 径	设计桩长	利而	测试深	实测声	速 km/s	高差值	实测声幅。 dB。		桩身主要缺	完整性等	
ш. J.	33 .1	(=)		度(a).,	平均,	临界	(%).1	平均.	临界.	陷措述。	级。	
			A-B.,	44. 00.,	3.148.	2. 947.	2.8.1	120.21.	114. 21.			
			A-C.,	44. 00.1	3. 624.	3. 029.1	7.1.1	122.81.	116.81.			
			B-C.1	44. 00.1	3. 785.	3. 360.	4.9.1	119.16	113. 16.			
G10.1	0.00.	24. 00.1	1低 -3高	20. 75.1	3. 456.1	2. 982.1	5. 9.1	113. 72.	107. 72.	а	「类柱。	
			1高 -3低	0. 00.1	3. 713.,	3. 295.1	5. 0.1	105. 31.	99. 31.,			
		0	2高 -3低	0. 00.1	3, 716.,	3. 329.1	6, 1.,	100. 10.	94, 10.,			
-	-		1-2.,	0.00.1	3.878.	3. 824.	5.1.,	133. 34.	127. 34.			
G16.1	0.00.	24. 00.1	1-3.,	0.00.1	3. 494.,	3, 220.1	3.4.	132.20	126. 20.	а	I 类柱。	
			2-3.1	0.00.1	3. 086.	2. 770.	4.4.1	128.36.	122. 36.			
			1-2.1	19.75.	3. 389.1	3. 080.1	4. 2.1	122.71.	116. 71.			
G16_1.,	0.00.	24. 00.1	1-3.,	19.75.	2. 581.,	0.000.1	54. 0.1	121.38.	115. 38.	1	I 类柱。	
			2-3.1	19.75.	3. 394.	2. 904.	6. 0.1	128.27	122. 27.			
G2.1	0.00.	45. 00.1	1-2.,	44. 00.1	3. 354.	3. 070.1	4.1.,	131. 15.	125. 15.	- St.	I 类植。	
G2_1.,	0.00.	24. 00.1	1-2.,	44. 00.1	3. 374.	3. 062.1	4.1.1	127. 19	121. 19.	a.	1 类桩。	
G47.1	0.00.	24. 00.1	1-2.,	28.75.	3. 749.	1. 635.	23, 2,1	127. 43.	121. 43.		I 类柱。	
G47.1	0.00.	24. 00.1	1-2.,	28. 75.,	3. 677.,	2. 928.	8. 4.,	127. 45.	121. 45.		I 类柱。	
			1-2.1	27. 50.1	3. 542.1	3. 174.	4. 2.1	95.86.	89.86.1			
G59.,	0.00.	24. 00.1	1-3.,	27. 50.1	3. 607.1	3. 157.1	5. 2.1	90. 91.	84. 91.1		I 类桩。	
			2-3.1	27. 50.	2. 783.	2. 463.	5.1.,	82, 71.,	76. 71.,		111	
5	1668	3	100		3		a la	- S	a .	.1		

声波透射法桩身质量完整性检测结果表↩

图 6.3-2 完整性检测结果表 2

序号	桩号.	施工日期,	测试日期。	桩径 ⊥ (m).	桩长⊥ (m).₁	平均声速 (km/s).,	平均波幅 (dB).,	完整性描述。	完整性 等级。
1.1	G10.,	-7	2012- 7- 7.1	0.00.1	24.00.1	3.564.1	114. 073.	a	I类柱
2.,	G16.,	51	2012- 7- 7.1	0.00.1	24.00.1	3.486.1	132. 049.1	,a	I类柱
3.1	G16_1.1	<u>e</u>	2012- 7- 7.1	0.00.1	24.00.,	3.432.1	128. 119.,	a	I 类柱
4.,	G2.1	a.	2012- 7- 7.1	0.00.1	45.00.1	3.361.1	131. 407.,	a	I 类柱
5.1	G2_1.1	а	2012- 7- 7.,	0.00.1	24.00.1	3.378.	127. 616.,	a	I类柱
6 .1	G47.5	02	2012- 7- 7.,	0.00.1	24.00.,	3.749.1	127. 621.,	a	I类柱
$\mathcal{I}_{\mathcal{A}}$	G47.1	in .	2012- 7- 7.1	0.00.1	24.00.1	3.749.	127. 621.	3	1 类柱。
8.1	G59.1	а	2012- 7- 7.1	0.00.1	24.00.1	3.326.,	90. 278.,	a	I 类柱
A.	$\hat{\mathbf{x}}$.,	a		a			.1	л

图 6.3-3 完整性检测结果表 3

工程名称。		्व		检测日期a	1	а
第工单位。		а		检测人员。		a
嘉柱示皇國。	在 号。1	G10.1	截径:	0.00m.1	在任日	24.00m.1
	测区:1	测试跨距。	s - 111 - 40	春 注:	\$0 ²	检测日期。
	A-B.	430 (mm).		л		a.
the state	A-C.	480 (mm).				
)	B-C.	480 (mm).1		.5		
00 02	1任-3 高小	480 (mm).				2012/ 7/ 7.1
\smile	1高-3 低。	480 (mm).				
	2 南-3 低。	480 (mm).			X2)	
嘉柱示章图:1	桩号:1	G16.	柱径-1	0.00m.i	桩长;1	24.00m.1
w	测区:1	测试跨距。		备 注:		检测日期。
01	1-2.1	470 (mm).		4		×.
03	1-3,4	470 (mm).		2012/ 7/ 7 4		
\smile	2-3.5	420 (mm).			80.	
秦柱示皇國。	柱 号:1	G16_1.	在任	0.00m.1	截长;1	24.00m. ₁
4	测区:1	测试跨距。	·	备 注:		检测日期。
01	1-2.1	470 (mm).		а		
03	1-3.1	470 (mm).	į.			2012/ 7/ 7.5
	2-3.1	420 (mm).		л		
嘉柱示堂図』	桩号:1	G2.1	在在:	0.00m.1	在长;	45.00m.1
the last	観区の	制试酶组。	3 - 111 - AG	备 注。	\$0 ⁻	检测日期。
02	1-2.5	480 (mm).		2		2012/ 7/ 7.5
森柱示主因 。	柱母:1	G2_1.1	柱径 4	0.00m.1	在长;	24.00m.1
the second	制区の	测试酶距。	3 - 111 - AG	备 注:	50°	检测日期。
(o2)	1-2.5	480 (mm).		a.		2012/ 7/ 7.3

桩基声测现场记录表↩

图 6.3-4 桩基声测现场记录表

另外还有广东等省的特殊汇总表格式可以提供选择。主要操作 步骤可以选择菜单栏文件-生成汇总表,会弹出如下生成汇总表对话 框,然后选择基桩文件,设置和选择文件名和路径,选择报告类型,

点击生成即可生成*.doc 格式的汇总表文档。

1 汇总表生成	-北京铭创科技有	限公司		×
选择基桩文	Z/#	删除选中	清除列表	
待生成基桩文	件列表			
生成文件名	re			
生成路径	C:\Users\Admi	nistrator\Desktop\re.	doc	选择路径
报告类型	桩基声测现场计	己录表	•	报告模板格式预览
		Г		Tim 234
			王以	4以月

图 6.3-5 汇总表生成

5.10 软件升级

本软件首创处理软件和设备机内软件在线自动升级系统,用户 只需连接互联网,选择菜单栏的升级维护,即可自动升级机内和机 外软件。

5.10.1 升级处理软件

选择菜单栏升级维护-机外数据处理软件更新选项,弹出在线升级对话框,如下图所示。

	自动更新	
数据处理软件升级	选择更新内容: 2.8.20120630 [普通升级]	•
	10:46:51 正在连接获取升级列表 10:46:52 深顶升级列表成功,共取得 8 个可洗升级)	tā
铭创科技		
Measure & Control Technology		
	里新忌进度:	
	当前进度:	

图 7.1-1 处理软件在线升级

软件默认选择最新的软件版本,并提示是否连接成功,也可以 手动选择软件版本,然后点击立即更新,等待完成后即可完成软件 更新。

5.10.2 升级机内软件

升级机内软件,只需要将 U 盘插入计算机,然后选择菜单升级 维护-机内采集软件更新选项,弹出采集软件升级对话框,方法基本 同机外软件升级,若未插入 U 盘,则会弹出如下提示,此时插入 U 盘,然后点击确定即可。

自动更新-北京铭创科技有限公司	 自动更新 						
仪器采集软件升级	送择更新内容: [2.6.20120630 (重要升级]						
的 的 和 的 和 支 和 支 和 支 和	AutoUpdateClientEmbed						
	确定 取消						
	立即更新 关闭						

7.2-1 插入 U 盘提示

6 附录

6.1 附录 A 相关数据标准计算公式

本仪器计算公式符合下列检测标准。计算公式来自各标准,如 有疑问请参考相关标准正式版。

《建筑基桩检测技术规范(JGJ 106-2003)》

10.4 检测数据的分析与判定

10.4.1 各测点的声时 t_c 、声速 v、波幅 A_p 及主频 f 应根据现场检测数据,按下列各式计算,并绘绘制声速-深度(v-z)曲线和波幅-深度(A_p -z)曲线,需要时可绘制辅助的主频-深度(f-z)曲线:

$$t_{ci} = t_i - t_0 - t' \tag{10.4.1-1}$$

$$v_i = \frac{l'}{t_{ci}}$$
 (10.4.1-2)

$$A_{pi} = 20 \lg \frac{a_i}{a_0}$$
(10.4.1-3)

$$f_i = \frac{1000}{T_i}$$
(10.4.1-4)

式中

t_{ci} ——第 i 测点声时(us);

- t'——声测管及耦合水层声时修正值(us);
- l' ——每检测剖面相应两声测管的外壁间净距离(mm);
- ^v_i ——第 i 测点声速(km/s);
- *A_{pi}* ─── 第 i 测点波幅值(dB);
- *a_i* ——第 i 测点信号首波峰值(V);
- ^{*a*0} ——零分贝信号幅值(V);

 f_i ——第 i 测点信号主频值(kHz),也可由信号频谱的主频 求得;

- *T_i* ——第 i 测点信号周期(us);
- 10.4.2 声速临界值应按下列步骤计算:

1、将同一检测剖面各测点的声速值^{*V_i*}由大至小按顺序排列, 即

 $v_1 \ge v_2 \ge \cdots v_i \ge \cdots v_{n-k} \ge \cdots v_{n-1} \ge v_n$ (k=0, 1, 2, …) (10.4.2-1) 式中 v_i ——按序排列后的第 i 个声速测量值;

n ——检测剖面测点数;

k ──从零开始逐一去掉式(10.4.2-1)^{*v_i*}序列尾部 最小数值的数据个数。

2 对从零开始逐一去掉式^{v_i}序列尾部最小数值后余下的数据 进行统计计算。当去掉最小数值的数据个数为 k 时,对包括^{v_{n-k}}在 内的金下数据^{v_1 - v_{n-k} 按下列公式进行统计计算:}

 $v_0 = v_m - \lambda \cdot s_x \tag{10.4.2-2}$

$$v_m = \frac{1}{n-k} \sum_{i=1}^{n-k} v_i$$
(10.4.2-3)

$$s_x = \sqrt{\frac{1}{n-k-1} \sum_{i=1}^{n-k} (v_i - v_m)^2}$$
(10.4.2-4)

式中

^{v₀} — 异常判断值;
 ^{v_m} — (n-k) 个数据的平均值;
 ^{s_x} — (n-k) 个数据的标准差;
 λ — 由表 10.4.2 查得的与 (n-k) 相对应的系数。

		表 10	.4.2	统计数	据个数	(<i>n</i> - <i>k</i>)	与对	应的 λ	值	
n-k	20	22	24	26	28	30	32	34	36	38
λ	1.64	1.69	1.73	1.77	1.80	1.83	1.86	1.89	1.91	1.94
n-k	40	42	44	46	48	50	52	54	56	58
λ	1.96	1.98	2.00	2.02	2.04	2.05	2.07	2.09	2.10	2.11
n-k	60	62	64	66	68	70	72	74	76	78
λ	2.13	2.14	2.15	2.17	2.18	2.19	2.20	2:21	2.22	2.23
n-k	80	82	84	86	88	90	92	94	96	98
λ	2.24	2.25	2.26	2.27	2.28	2.29	2.29	2.30	2.31	2.32
n-k	100	105	110	115	120	125	130	135	140	145
λ	2.33	2.34	2.36	2.38	2.39	2.41	2.42	2.43	2.45	2.46
n-k	150	160	170	180	190	200	220	240	260	280
2	2.47	2.50	2.52	2.54	2.56	2.58	2.61	2.64	2.67	2.69

3 将^{v_{n-k}} 与异常判断值^{v_0} 进行比较,当^{v_{n-k}} \leq v_0 时, v_{n-k} 及 其以后的数据均为异常,去掉^{v_{n-k}} 及其以后的异常数据;再用数据 $v_{1-}v_{n-k-1}$ 并重复式(10.4.2-2)-(10.4.2-4)的计算步骤,直到^{v_i}序 列中余下的全部数据满足:

$$v_i > v_0$$

(10.4.2-5)

此时, $^{m v_0}$ 为声速的异常判断临界值 $^{m v_c}$ 。

4 声速异常时的临界值判据为:

41 / 51

$$V_i \leq V_c$$

(10.4.2-6)

当式(10.4.2-6)成立时, 声速可判定为异常。

10.4.3 当检测剖面 n 个测点的声速值普遍偏低且离散性很小时, 宜采用声速低限值判据:

$$\frac{v_i \le v_L}{(10.4.3)}$$

式中

^{*v_i* ——第 i 测点声速(km/s);}

 v_L ——声速低限值(km/s),由预留同条件混凝 土试件的抗压强度与声速对比试验结果,结合本地区 实际经验确定。

当式(10.4.3)成立时,可直接判定为声速低于低限值异常。

10.4.4 波幅异常时的临界值判据应按下列公式计算:

$$A_{m} = \frac{1}{n} \sum_{i=1}^{n} A_{pi}$$
(10.4.4-1)
$$A_{pi} < A_{m} - 6$$
(10.4.4-2)

式中

A_m ——波幅平均值 (dB);

42 / 51

n ——检测剖面测点数。 当式(10.4.4-2)成立时,波幅可判定为异常。

10.4.5 当采用斜率法的 PSD 值作为辅助异常点判据时, PSD 值应按下列公式计算:

PSD=K
$$\Delta t$$

(10.4.5-1)
 $K = \frac{t_{ci} - t_{ci-1}}{z_i - z_{i-1}}$
(10.4.5-2)
 $\Delta t = t_{ci} - t_{ci-1}$
(10.4.5-3)

式中

t_{ci} ────第 i 测点声时(us); *t_{ci-1}* ────第 i-1 测点声时(us); ^{*z*}_{*i*} ─────第 i 测点深度(m); ^{*z*}_{*i*-1} ────第 i-1 测点深度(m);

根据 PSD 值在某深度处的突变,结合波幅变化情况,进行异常 点判定。

《混凝土缺陷检测技术规程(CECS 21: 2000)》

9.5 数据处理与判断

9.5.1 数据处理:

1 桩身混凝土的声时(t_0)、声速(t_n)分别按下列公式计算:

$$t_{ci} = t_i - t_{00}$$
 (us) (9.5.1-1)

$$v_i = l_i / t_{ci}$$
 (km/s) (9.5.1-2)

式中

*t*₀₀ ——声时初读数(us), 按附录 B 测量;

 t_i ——测点 i 的测读声时值(us);

 l_i ——测点 i 处二根声测管内边缘之间的距离(mm)。

2 主频 (f_i): 数字式超声仪直接读取;模拟式超声仪应根据 首波周期按 (9.5.1-3) 式计算。

 $f_i = 1000 / T_{bi} \, (\text{kHz})$ (9.5.1-3)

式中

T_{bi} ——测点 i 的首波周期(us)。

9.5.2 桩身混凝土缺陷可疑点判断方法:

1 概率法:将同一桩同一剖面的声速、波幅、主频按本规程第 6.3.1 和 6.3.2 条进行计算和异常值判别。当某一测点的一个或多个 声学参数被判为异常值时,即为存在缺陷的可疑点; 2 斜率法:用声时(t_c)--深度(h)曲线相邻测点的 K 和相邻 两点声时差值 Δt 的乘积 Z 绘制 Z-h 曲线,根据 Z-h 曲线的突变位置, 并结合波幅值的变化情况可判定存在缺陷的可疑点或可疑区域的边 界。

$$K = (t_i - t_{i-1})/(d_i - d_{i-1})$$

(9.5.2-1)

$$Z = K \times \Delta t = (t_i - t_{i-1})^2 / (d_i - d_{i-1})$$

(9.5.2-2)

式中

 $t_i - t_{i-1}$ 、 $d_i - d_{i-1}$ ——分别代表相邻两测点的声时差和深度差。

9.5.3 结合判断方法绘制相应声学参数-深度曲线。

9.5.4 根据可疑测点的分布及其数值的大小综合分析, 判断缺陷 的位置和范围。

9.5.5 当需用声速评价一个桩的混凝土质量匀质性时,可分别按 (9.5.5)各式计算测点混凝土声速值^{*V_i*}和声速的平均值^{*m_v*}和标准 差^{*S_v*及离差系数^{*C_v*}。根据声速的离差系数,可评价灌注桩混凝土 匀质性的优劣。}

按下式分别计算:

$$v_i = l_i / t_{ci}$$

(9.5.5-1)

《公路工程基桩动测技术规范(JTG/T F81-01-2004)》

6.4 检测数据分析与判定

6.4.1 声时的修正值应按下式计算:

$$t' = \frac{D - d}{v_t} + \frac{d - d'}{v_w}$$
(6.4.1)

式中

 v_t ——声测管壁厚度方向声速值(km/s);

 v_w ——水的声速值(km/s)。

6.4.2 声时、声速和声速平均值应按下列公式计算,并绘制声速-深度曲线、波幅-深度曲线。

$$t = t_i - t_0 - t'$$
(6.4.2-1)
$$v_i = \frac{l}{t_c}$$
(6.4.2-2)

$$v_m = \sum_{i=1}^n \frac{v_i}{n}$$

(6.4.2-3)

式中

t ——声波在混凝土中的传播时间(简称声时, μ s);

- t_0 ——声波检测系统延迟时间 (μ s);
- ^{*v_i* ——第 i 个测点声速值(km/s);}
- *l* ——两根检测管外壁间的距离(mm);

- *n* ——测点数。
- 6.4.3 单孔折射法的声时、声速值应按下列公式计算:

$$\Delta t = t_2 - t_1$$

(6.4.3-1)
 $v_i = h / \Delta t$
(6.4.3-2)

式中

- v_i ——第^{*i*} 测点的声速值(km/s);
- Δt ——两个接受换能器间的声时差 (μ s);

 t_1 ——近道接收换能器声时(μ s);

 t_2 ——远道接收换能器声时(μ s);

h ——两个接收换能器间的距离(mm)。

6.4.4 桩身完整性应根据下列方法综合判定:

1 声速判据

采用正常混凝土声速平均值与 2 倍声速标准差之差作为判定桩 身有无缺陷的临界值。当实测声速低于声速临界值时,应将其作为 可疑缺陷区。

$$v_{D} = v_{m} - 2\sigma_{v}$$
(6.4.4-1)

$$v_{m} = \sum_{i=1}^{n} v_{i} / n$$
(6.4.4-2)

$$\sigma_{v} = \sqrt{\sum_{i=1}^{n} (v_{i} - v_{m})^{2} / (n-1)}$$
(6.4.4-3)

式中

v_D — 声速临界值 (km/s);

 v_m —— 正常混凝土声速平均值 (km/s);

 σ_v —— 正常混凝土声速标准差;

 v_i —— 第 i 个测点声速值(km/s);

n —— 测点数。

2 波幅判据

用波幅平均值减 6dB 作为波幅临界值,当实测波幅低于波 幅临界值时,应将其作为可疑缺陷区。

$$A_D = A_m - 6$$

(6.4.4-4)

$$A_m = \sum_{i=1}^n A_i / n$$

(6.4.4-5)

式中

A_D —— 波幅临界值 (dB);

A_m ── 波幅平均值 (dB);

A_i ──── 第 i 个测点相对波幅值(dB)。

3 PSD 判断

应按下列公式计算 PSD 值,并绘制 PSD-深度曲线,当 PSD 值在某测点附近变化明显时,应将其作为可疑缺陷区。

$$PSD = \frac{(t_i - t_{i-1})^2}{z_i - z_{i-1}}$$

(6.4.4-6)

式中

t_i —— 第i个测点声时值(μs);

50 / 51

- *t_{i-1}* —— 第 i-1 个测点声时值(μ s);
- ^z_i —— 第 i 个测点深度(m);
- ^{*z*_{*i*−1} ── 第 i-1 个测点深度(m)。}